Modeling of Building Energy Consumption by Integrating Regression Analysis and Artificial Neural Network with Data Classification

人工神经网络 能源消耗 回归分析 计算机科学 数据挖掘 均方误差 能量(信号处理) 回归 工程类 机器学习 人工智能 统计 数学 电气工程
作者
Iffat Ridwana,Nabil Nassif,Wonchang Choi
出处
期刊:Buildings [MDPI AG]
卷期号:10 (11): 198-198 被引量:15
标识
DOI:10.3390/buildings10110198
摘要

With the constant expansion of the building sector as a major energy consumer in the modern world, the significance of energy-efficient building systems cannot be more emphasized. Most of the buildings are now equipped with an electric dashboard to record consumption data which presents a significant scope of research by utilizing those data in energy modeling. This paper investigates conventional regression modeling in building energy estimation and proposes three models with data classifications to improve their performance. The proposed models are regression models and an artificial neural network model with data classification for predicting hourly or sub-hourly energy usage in four different buildings. Energy data is collected from a building energy simulation program and existing buildings to develop the models for detailed analysis. Data classification is recommended according to the system operating schedules of the buildings and models are tested for their performance in capturing the data trends resulting from those schedules. Proposed regression models and an ANN model with the recommended classification show very accurate results in estimating energy demand compared to conventional regression models. Correlation coefficient and root mean squared error values improve noticeably for the proposed models and they can potentially be utilized for energy conservation purposes and energy savings in the buildings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
二狗子完成签到,获得积分10
1秒前
1秒前
整齐的白筠完成签到 ,获得积分10
1秒前
ding应助费费Queen采纳,获得10
1秒前
帆帆帆发布了新的文献求助10
2秒前
范久久完成签到,获得积分20
2秒前
3秒前
一个橘子完成签到,获得积分10
4秒前
kunyi完成签到 ,获得积分10
4秒前
4秒前
GodMG完成签到,获得积分10
4秒前
4秒前
陈泽宇发布了新的文献求助10
4秒前
wang完成签到,获得积分20
5秒前
斯文谷秋发布了新的文献求助10
5秒前
5秒前
飞燕完成签到 ,获得积分10
5秒前
6秒前
上官若男应助LIN_YX采纳,获得10
6秒前
搜集达人应助难过小天鹅采纳,获得10
6秒前
7秒前
李小伟发布了新的文献求助10
8秒前
wendydqw发布了新的文献求助10
9秒前
ayingjiang发布了新的文献求助10
9秒前
9秒前
tsuki完成签到 ,获得积分10
9秒前
情怀应助WANG采纳,获得10
9秒前
费费Queen完成签到,获得积分10
9秒前
彳亍1117应助无心的广山采纳,获得10
10秒前
园宝发布了新的文献求助10
11秒前
子车茗应助乐乐乐乐乐乐采纳,获得10
11秒前
酷波er应助everglow采纳,获得10
12秒前
FAN发布了新的文献求助10
12秒前
12秒前
13秒前
14秒前
15秒前
沐沐完成签到,获得积分10
16秒前
222完成签到,获得积分10
16秒前
小王完成签到,获得积分10
17秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3168812
求助须知:如何正确求助?哪些是违规求助? 2820111
关于积分的说明 7929423
捐赠科研通 2480192
什么是DOI,文献DOI怎么找? 1321277
科研通“疑难数据库(出版商)”最低求助积分说明 633136
版权声明 602497