Modeling of Building Energy Consumption by Integrating Regression Analysis and Artificial Neural Network with Data Classification

人工神经网络 能源消耗 回归分析 计算机科学 数据挖掘 均方误差 能量(信号处理) 回归 工程类 机器学习 人工智能 统计 数学 电气工程
作者
Iffat Ridwana,Nabil Nassif,Wonchang Choi
出处
期刊:Buildings [Multidisciplinary Digital Publishing Institute]
卷期号:10 (11): 198-198 被引量:15
标识
DOI:10.3390/buildings10110198
摘要

With the constant expansion of the building sector as a major energy consumer in the modern world, the significance of energy-efficient building systems cannot be more emphasized. Most of the buildings are now equipped with an electric dashboard to record consumption data which presents a significant scope of research by utilizing those data in energy modeling. This paper investigates conventional regression modeling in building energy estimation and proposes three models with data classifications to improve their performance. The proposed models are regression models and an artificial neural network model with data classification for predicting hourly or sub-hourly energy usage in four different buildings. Energy data is collected from a building energy simulation program and existing buildings to develop the models for detailed analysis. Data classification is recommended according to the system operating schedules of the buildings and models are tested for their performance in capturing the data trends resulting from those schedules. Proposed regression models and an ANN model with the recommended classification show very accurate results in estimating energy demand compared to conventional regression models. Correlation coefficient and root mean squared error values improve noticeably for the proposed models and they can potentially be utilized for energy conservation purposes and energy savings in the buildings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
科研鸟发布了新的文献求助10
2秒前
112233445566完成签到,获得积分20
4秒前
4秒前
4秒前
干饭大王应助budingman采纳,获得20
5秒前
科研通AI5应助郴郴采纳,获得10
7秒前
像风一样发布了新的文献求助10
8秒前
柯一一应助热心小松鼠采纳,获得10
9秒前
10秒前
Spydeer发布了新的文献求助10
10秒前
1111chen发布了新的文献求助30
10秒前
12秒前
扣扣登陆完成签到 ,获得积分10
13秒前
14秒前
LL发布了新的文献求助10
17秒前
Alex应助Dahai采纳,获得30
18秒前
完美世界应助琳琳采纳,获得10
18秒前
怡然冰之完成签到 ,获得积分10
18秒前
饱满不悔完成签到 ,获得积分10
18秒前
曼凡发布了新的文献求助10
19秒前
Bryan应助热心小松鼠采纳,获得10
21秒前
zzmAZUSA完成签到,获得积分10
21秒前
冷傲的水儿完成签到,获得积分20
23秒前
学业繁忙完成签到,获得积分10
24秒前
科研混子发布了新的文献求助10
25秒前
平淡的友易完成签到,获得积分10
25秒前
Ting应助武雨寒采纳,获得10
26秒前
26秒前
MrTStar完成签到 ,获得积分10
30秒前
30秒前
Jasper应助徐嘿嘿采纳,获得10
31秒前
1111chen发布了新的文献求助30
31秒前
ANSON发布了新的文献求助30
32秒前
32秒前
33秒前
打打应助科研通管家采纳,获得10
34秒前
bkagyin应助科研通管家采纳,获得10
34秒前
乐乐应助科研通管家采纳,获得10
34秒前
情怀应助科研通管家采纳,获得10
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966796
求助须知:如何正确求助?哪些是违规求助? 3512322
关于积分的说明 11162614
捐赠科研通 3247199
什么是DOI,文献DOI怎么找? 1793730
邀请新用户注册赠送积分活动 874602
科研通“疑难数据库(出版商)”最低求助积分说明 804432