Distributionally Robust Hub Location

数学优化 稳健优化 计算机科学 布线(电子设计自动化) 运筹学 数学 计算机网络
作者
Shuming Wang,Zhi Chen,Tianqi Liu
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:54 (5): 1189-1210 被引量:58
标识
DOI:10.1287/trsc.2019.0948
摘要

We study the adaptive distributionally robust hub location problem with multiple commodities under demand and cost uncertainty in both uncapacitated and capacitated cases. The hub location decision anticipates the worst-case expected cost over an ambiguity set of possible distributions of the uncertain demand and cost, and the routing policy, being adaptive to the uncertainty realization, ships commodities through selected hubs. We investigate the adaptivity and tractability of the distributionally robust model under different distributional information about uncertainty. In the uncapacitated case in which demand and cost are independent and costs of different commodities are also mutually independent, the adaptive distributionally robust model is equivalent to a nonadaptive classical robust model and the second-stage routing decision follows an optimal static policy. We then relax the independence assumption and show that the second-stage routing decision follows an optimal scenario-wise policy if either the demand or the cost is supported on a convex hull of given scenarios. We extend our analysis to the capacitated case and show that the second-stage routing decision still follows an optimal scenario-wise policy if the demand is supported on the convex hull of given scenarios. In terms of tractability, for all mentioned cases, we reformulate the distributionally robust model as a moderate-sized mixed-integer linear program, and we recover the associated worst-case distribution by solving a collection of linear programs. Through numerical studies using the Civil Aeronautics Board data set, we demonstrate the advantages of the distributionally robust model by examining its superior out-of-sample performance against the classical robust model and the stochastic model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文茵完成签到,获得积分10
1秒前
2秒前
青竹妈妈完成签到,获得积分10
2秒前
ccc完成签到 ,获得积分10
3秒前
欸嘿完成签到,获得积分10
3秒前
gzmejiji完成签到 ,获得积分10
4秒前
曾经的刺猬完成签到,获得积分10
5秒前
子华完成签到 ,获得积分10
6秒前
8秒前
小菜完成签到 ,获得积分10
9秒前
猫一盒完成签到 ,获得积分10
9秒前
10秒前
Jasper应助[刘小婷]采纳,获得10
10秒前
10秒前
光之美少女完成签到 ,获得积分10
11秒前
科研通AI5应助化学采纳,获得10
11秒前
Hou完成签到 ,获得积分10
11秒前
苏晓醒发布了新的文献求助10
12秒前
青竹妈妈发布了新的文献求助10
12秒前
12秒前
研友_nqaogn发布了新的文献求助10
13秒前
CIYO发布了新的文献求助10
15秒前
ding应助刘明生采纳,获得10
15秒前
afleve完成签到,获得积分10
15秒前
16秒前
16秒前
荒草瓦砾完成签到,获得积分10
16秒前
16秒前
研友_nqaogn完成签到,获得积分10
19秒前
科研通AI5应助Leohp采纳,获得30
19秒前
afleve发布了新的文献求助10
21秒前
cheney完成签到,获得积分10
22秒前
JJQ发布了新的文献求助10
23秒前
[刘小婷]完成签到,获得积分10
24秒前
乐乐应助MOTOMORI采纳,获得10
25秒前
共享精神应助macxinn采纳,获得10
26秒前
大山完成签到,获得积分10
27秒前
ATom完成签到,获得积分10
29秒前
Tina完成签到 ,获得积分10
29秒前
30秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 500
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734505
求助须知:如何正确求助?哪些是违规求助? 3278465
关于积分的说明 10009670
捐赠科研通 2995064
什么是DOI,文献DOI怎么找? 1643182
邀请新用户注册赠送积分活动 780989
科研通“疑难数据库(出版商)”最低求助积分说明 749196