Mammography-based radiomic analysis for predicting benign BI-RADS category 4 calcifications

列线图 医学 乳腺摄影术 双雷达 放射科 逻辑回归 接收机工作特性 队列 乳房成像 乳腺癌 病理 肿瘤科 癌症 内科学
作者
Chuqian Lei,Wei Wei,Zhenyu Liu,Qianqian Xiong,Ciqiu Yang,Mei Yang,Liulu Zhang,Teng Zhu,Xiaosheng Zhuang,Chunling Liu,Zaiyi Liu,Jie Tian,Kun Wang
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:121: 108711-108711 被引量:41
标识
DOI:10.1016/j.ejrad.2019.108711
摘要

We developed and validated a radiomic model based on mammography and assessed its value for predicting the pathological diagnosis of Breast Imaging Reporting and Data System (BI-RADS) category 4 calcifications.Patients with a total of 212 eligible calcifications were recruited (159 cases in the primary cohort and 53 cases in the validation cohort). In total, 8286 radiomic features were extracted from the craniocaudal (CC) and mediolateral oblique (MLO) images. Machine learning was used to select features and build a radiomic signature. The clinical risk factors were selected from the independent clinical factors through logistic regression analyses. The radiomic nomogram incorporated the radiomic signature and an independent clinical risk factor. The diagnostic performance of the radiomic model and the radiologists' empirical prediction model was evaluated by the area under the receiver operating characteristic curve (AUC). The differences between the various AUCs were compared with DeLong's test.Six radiomic features and the menopausal state were included in the radiomic nomogram, which discriminated benign calcifications from malignant calcifications with an AUC of 0.80 in the validation cohort. The difference between the classification results of the radiomic nomogram and that of radiologists was significant (p < 0.05). Particularly for patients with calcifications that are negative on ultrasounds but can be detected by mammography (MG+/US- calcifications), the identification ability of the radiomic nomogram was very strong.The mammography-based radiomic nomogram is a potential tool to distinguish benign calcifications from malignant calcifications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
包容依琴完成签到,获得积分10
2秒前
2秒前
qiulong发布了新的文献求助10
3秒前
科研通AI5应助爱听歌牛青采纳,获得10
3秒前
zjc完成签到,获得积分20
4秒前
跳跃仙人掌应助pp63采纳,获得50
5秒前
shaohua2011发布了新的文献求助10
6秒前
lulu发布了新的文献求助10
6秒前
刘佳梦完成签到,获得积分20
7秒前
7秒前
7秒前
8秒前
科研通AI2S应助巴拉巴拉巴采纳,获得10
8秒前
vante完成签到,获得积分10
9秒前
9秒前
Libra发布了新的文献求助20
10秒前
10秒前
网络复杂发布了新的文献求助10
10秒前
郭晓波发布了新的文献求助10
11秒前
11秒前
铁柱发布了新的文献求助10
12秒前
xiaojiang关注了科研通微信公众号
12秒前
成就紫真完成签到,获得积分10
13秒前
14秒前
心楠完成签到,获得积分10
14秒前
优雅的迎彤完成签到 ,获得积分10
15秒前
俏皮的山水完成签到 ,获得积分10
15秒前
某人金发布了新的文献求助10
15秒前
sjh发布了新的文献求助10
15秒前
白白白发布了新的文献求助10
15秒前
fff123完成签到,获得积分10
15秒前
xuanxuan完成签到 ,获得积分10
16秒前
刘佳梦关注了科研通微信公众号
17秒前
vante发布了新的文献求助10
18秒前
19秒前
酷波er应助科研通管家采纳,获得30
20秒前
墨月白应助科研通管家采纳,获得10
20秒前
充电宝应助科研通管家采纳,获得10
20秒前
李健应助科研通管家采纳,获得10
20秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3732073
求助须知:如何正确求助?哪些是违规求助? 3276483
关于积分的说明 9997274
捐赠科研通 2992006
什么是DOI,文献DOI怎么找? 1641986
邀请新用户注册赠送积分活动 780121
科研通“疑难数据库(出版商)”最低求助积分说明 748700