过电位
电化学
循环伏安法
无机化学
电子转移
化学
扫描电子显微镜
材料科学
电极
复合材料
有机化学
物理化学
作者
Yu‐Jen Shih,Zhi-Lun Wu,Yao-Hui Huang,Chin‐Pao Huang
标识
DOI:10.1016/j.cej.2019.123157
摘要
Cu/Ni composite electrodes were prepared and studied for the electrochemical reduction of nitrate in aqueous solutions. Electrodeless plating technique, with tartrate as chelatant and formaldehyde as reducing agent, enabled the in-situ incorporation of Cu nanoparticles into the open-pore structured Ni foam to form Cu-Ni composite electrodes. X-ray diffractometer (XRD) and scanning electron microscopy (SEM) revealed that the crystal facet and grain morphology of Cu nanoparticles was closely controlled by the plating time and played a significant role in nitrate reduction and nitrogen selectivity. Cyclic voltammetry provided information on the electron transfer between surface nitrogen species and Cu/Ni electrodes. Electrochemical nitrate reduction was initiated at the onset potential of Cu(0)/Cu(I) redox reaction over a potential window of −0.6 V to −1.2 V. The preferential Cu{1 1 1} facet orientation improved the electron transfer process. Batch kinetics studies at constant current and potential showed that specific adsorption of nitrate and nitrite on the Cu{1 1 1} facet was critical to efficient electrochemical nitrate reduction. Moreover, the conversion of nitrogenous byproduct was potential-dependent. Results showed that N2 selectivity was high (55.6%) at low overpotential (i.e., ⩾−0.6 V vs. Hg/HgO. At high overpotential (i.e, <−0.6 V) there was complete of NO3− reduction with NH4+ as major byproduct.
科研通智能强力驱动
Strongly Powered by AbleSci AI