Fully automatic segmentation of type B aortic dissection from CTA images enabled by deep learning

医学 分割 基本事实 Sørensen–骰子系数 主动脉 主动脉夹层 卷积神经网络 人工智能 皮尔逊积矩相关系数 核医学 放射科 模式识别(心理学) 图像分割 计算机科学 外科 数学 统计
作者
Long Cao,Ruiqiong Shi,Yangyang Ge,Lei Xing,Panli Zuo,Yan Jia,Jie Liu,Yuan He,Xinhao Wang,Shaoliang Luan,Xiangfei Chai,Wei Guo
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:121: 108713-108713 被引量:86
标识
DOI:10.1016/j.ejrad.2019.108713
摘要

Purpose This study sought to establish a robust and fully automated Type B aortic dissection (TBAD) segmentation method by leveraging the emerging deep learning techniques. Methods Preoperative CTA images of 276 patients with TBAD were retrospectively collected from January 2011 to December 2018. Using a reproducible manual segmentation protocol of three labels (whole aorta, true lumen (TL), and false lumen (FL)), a ground truth database (n = 276) was established and randomly divided into training and testing sets in a rough 8:1 ratio. Three convolutional neural network (CNN) models were developed on the training set (n = 246): single one-task (CNN1), single multi-task (CNN2), and serial multi-task (CNN3) models. Performance was evaluated using the Dice coefficient score (DCS) and lumen volume accuracy on the testing set (n = 30). Pearson correlation, Intra-class correlation coefficients and Bland–Altman plots were used to evaluate the inter-observer measurement agreement. Results CNN3 performed the best, with mean DCSs of 0.93 ± 0.01, 0.93 ± 0.01 and 0.91 ± 0.02 for the whole aorta, TL, and FL, respectively (p < 0.05). Each label volume from CNN3 showed excellent agreement with the ground truth, with mean volume differences of −31.05 (−82.76 to 20.65) ml, 4.79 (−11.04 to 20.63) ml, and 8.67(−11.40 to 28.74) ml for the whole aorta, TL, and FL, respectively. The segmentation speed of CNN3 was 0.038 ± 0.006 s/image. Conclusion Deep learning-based model provides a promising approach for accurate and efficient segmentation of TBAD and makes it possible for automated measurements of TBAD anatomical features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cloudup233完成签到,获得积分10
刚刚
刚刚
络巫琥关注了科研通微信公众号
刚刚
刚刚
刚刚
思源应助LMH采纳,获得10
刚刚
木头人应助研友_nEWly8采纳,获得10
1秒前
s1mple发布了新的文献求助10
1秒前
1秒前
英姑应助Polarbear29采纳,获得10
1秒前
脑洞疼应助SUN采纳,获得10
1秒前
2秒前
bkagyin应助心想事成采纳,获得10
2秒前
whhhhh发布了新的文献求助30
2秒前
ding应助义气鲂采纳,获得10
2秒前
脑洞疼应助篱篱清采纳,获得30
2秒前
情怀应助Eraser采纳,获得10
2秒前
rudjs发布了新的文献求助10
3秒前
林hh发布了新的文献求助10
3秒前
成长的点滴完成签到,获得积分10
3秒前
3秒前
3秒前
kuku_99发布了新的文献求助200
4秒前
苏莉婷完成签到,获得积分10
4秒前
4秒前
哈哈的哈哈应助XX采纳,获得20
4秒前
peach发布了新的文献求助10
4秒前
4秒前
5秒前
谜迪发布了新的文献求助10
5秒前
6秒前
共享精神应助西红柿采纳,获得10
6秒前
6秒前
6秒前
科研通AI6应助Matrix采纳,获得10
7秒前
orixero应助强壮的美女采纳,获得10
7秒前
7秒前
红糖完成签到,获得积分20
7秒前
糊涂的笑天完成签到 ,获得积分10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5286035
求助须知:如何正确求助?哪些是违规求助? 4438924
关于积分的说明 13819501
捐赠科研通 4320540
什么是DOI,文献DOI怎么找? 2371517
邀请新用户注册赠送积分活动 1367063
关于科研通互助平台的介绍 1330462