HDEC-TFA: An Unsupervised Learning Approach for Discovering Physical Scattering Properties of Single-Polarized SAR Image

合成孔径雷达 散射 计算机科学 人工智能 旋光法 聚类分析 模式识别(心理学) 雷达成像 逆合成孔径雷达 方位角 计算机视觉 遥感 雷达 物理 光学 地质学 电信
作者
Zhongling Huang,Mihai Datcu,Zongxu Pan,Xiaolan Qiu,Bin Lei
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:59 (4): 3054-3071 被引量:12
标识
DOI:10.1109/tgrs.2020.3014335
摘要

Understanding the physical properties and scattering mechanisms contributes to synthetic aperture radar (SAR) image interpretation. For single-polarized SAR data, however, it is difficult to extract the physical scattering mechanisms due to lack of polarimetric information. Time-frequency analysis (TFA) on complex-valued SAR image provides extra information in frequency perspective beyond the “image” domain. Based on TFA theory, we propose to generate the subband scattering pattern for every object in complex-valued SAR image as the physical property representation, which reveals backscattering variations along slant-range and azimuth directions. In order to discover the inherent patterns and generate a scattering classification map from single-polarized SAR image, an unsupervised hierarchical deep embedding clustering (HDEC) algorithm based on TFA (HDEC-TFA) is proposed to learn the embedded features and cluster centers simultaneously and hierarchically. The polarimetric analysis result for quad-pol SAR images is applied as reference data of physical scattering mechanisms. In order to compare the scattering classification map obtained from single-polarized SAR data with the physical scattering mechanism result from full-polarized SAR, and to explore the relationship and similarity between them in a quantitative way, an information theory based evaluation method is proposed. We take Gaofen-3 quad-polarized SAR data for experiments, and the results and discussions demonstrate that the proposed method is able to learn valuable scattering properties from single-polarization complex-valued SAR data, and to extract some specific targets as well as polarimetric analysis. At last, we give a promising prospect to future applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
A111完成签到,获得积分20
2秒前
快乐西瓜完成签到,获得积分10
4秒前
明小丽完成签到,获得积分10
5秒前
科研通AI2S应助louis采纳,获得10
6秒前
HEIKU应助高敏采纳,获得10
7秒前
英俊的铭应助一sh采纳,获得10
8秒前
A111发布了新的文献求助30
9秒前
11秒前
12秒前
头孢克肟完成签到 ,获得积分10
13秒前
小旭不会飞完成签到,获得积分10
13秒前
诗梦完成签到,获得积分10
13秒前
13秒前
BachelorYY完成签到,获得积分10
14秒前
14秒前
鱼莉完成签到,获得积分10
15秒前
hcy发布了新的文献求助100
16秒前
ccc发布了新的文献求助10
17秒前
随风完成签到,获得积分10
17秒前
美好的靖发布了新的文献求助10
18秒前
19秒前
19秒前
万能图书馆应助BachelorYY采纳,获得10
19秒前
gt完成签到 ,获得积分10
19秒前
20秒前
科研通AI2S应助纯真的血茗采纳,获得10
20秒前
QG完成签到,获得积分10
20秒前
大模型应助ccc采纳,获得10
22秒前
23秒前
领导范儿应助三金采纳,获得10
24秒前
GZPFJMU发布了新的文献求助10
25秒前
科研通AI2S应助JDM采纳,获得10
25秒前
Sweet完成签到,获得积分10
25秒前
逃离地球发布了新的文献求助10
28秒前
碧蓝咖啡豆完成签到 ,获得积分10
31秒前
喜悦的飞机完成签到,获得积分10
31秒前
Denghui完成签到,获得积分10
32秒前
拓跋听南完成签到,获得积分10
33秒前
GZPFJMU完成签到,获得积分10
33秒前
华仔应助大方不乐采纳,获得10
36秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312235
求助须知:如何正确求助?哪些是违规求助? 2944833
关于积分的说明 8521765
捐赠科研通 2620550
什么是DOI,文献DOI怎么找? 1432948
科研通“疑难数据库(出版商)”最低求助积分说明 664797
邀请新用户注册赠送积分活动 650134