HDEC-TFA: An Unsupervised Learning Approach for Discovering Physical Scattering Properties of Single-Polarized SAR Image

合成孔径雷达 散射 计算机科学 人工智能 旋光法 聚类分析 模式识别(心理学) 雷达成像 逆合成孔径雷达 方位角 计算机视觉 遥感 雷达 物理 光学 地质学 电信
作者
Zhongling Huang,Mihai Datcu,Zongxu Pan,Xiaolan Qiu,Bin Lei
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:59 (4): 3054-3071 被引量:12
标识
DOI:10.1109/tgrs.2020.3014335
摘要

Understanding the physical properties and scattering mechanisms contributes to synthetic aperture radar (SAR) image interpretation. For single-polarized SAR data, however, it is difficult to extract the physical scattering mechanisms due to lack of polarimetric information. Time-frequency analysis (TFA) on complex-valued SAR image provides extra information in frequency perspective beyond the “image” domain. Based on TFA theory, we propose to generate the subband scattering pattern for every object in complex-valued SAR image as the physical property representation, which reveals backscattering variations along slant-range and azimuth directions. In order to discover the inherent patterns and generate a scattering classification map from single-polarized SAR image, an unsupervised hierarchical deep embedding clustering (HDEC) algorithm based on TFA (HDEC-TFA) is proposed to learn the embedded features and cluster centers simultaneously and hierarchically. The polarimetric analysis result for quad-pol SAR images is applied as reference data of physical scattering mechanisms. In order to compare the scattering classification map obtained from single-polarized SAR data with the physical scattering mechanism result from full-polarized SAR, and to explore the relationship and similarity between them in a quantitative way, an information theory based evaluation method is proposed. We take Gaofen-3 quad-polarized SAR data for experiments, and the results and discussions demonstrate that the proposed method is able to learn valuable scattering properties from single-polarization complex-valued SAR data, and to extract some specific targets as well as polarimetric analysis. At last, we give a promising prospect to future applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HeWA完成签到,获得积分10
1秒前
咚咚锵完成签到,获得积分20
2秒前
老阎应助想睡在雨里采纳,获得30
2秒前
金毛大王关注了科研通微信公众号
3秒前
唯美完成签到,获得积分10
3秒前
星辰大海应助zjky6r采纳,获得10
3秒前
呼呼夫人完成签到,获得积分10
3秒前
4秒前
安诺完成签到,获得积分10
4秒前
5秒前
6秒前
香蕉觅云应助醉熏的笑萍采纳,获得10
8秒前
感动书文发布了新的文献求助10
9秒前
彩色鹏煊发布了新的文献求助10
10秒前
优雅含莲完成签到 ,获得积分10
11秒前
yuyu完成签到,获得积分10
11秒前
12秒前
千秋完成签到 ,获得积分10
13秒前
满意的厉完成签到,获得积分10
13秒前
zjky6r完成签到,获得积分20
14秒前
ding应助星光采纳,获得10
15秒前
15秒前
旧戏人发布了新的文献求助10
17秒前
tongbuxiang应助姚芭蕉采纳,获得10
19秒前
20秒前
XING完成签到 ,获得积分10
21秒前
沉心望星海完成签到,获得积分10
22秒前
Sega完成签到,获得积分10
22秒前
22秒前
小马甲应助xiaopeilin1982采纳,获得10
22秒前
23秒前
脑洞疼应助liv采纳,获得10
23秒前
桑榆非晚完成签到,获得积分10
23秒前
24秒前
等待荔枝发布了新的文献求助10
24秒前
27秒前
阳光的嫣完成签到,获得积分20
27秒前
金毛大王发布了新的文献求助50
28秒前
Lucas应助草莓味de烤猪蹄采纳,获得10
29秒前
星光发布了新的文献求助10
29秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5382464
求助须知:如何正确求助?哪些是违规求助? 4505584
关于积分的说明 14022307
捐赠科研通 4414979
什么是DOI,文献DOI怎么找? 2425293
邀请新用户注册赠送积分活动 1418096
关于科研通互助平台的介绍 1396102