HDEC-TFA: An Unsupervised Learning Approach for Discovering Physical Scattering Properties of Single-Polarized SAR Image

合成孔径雷达 散射 计算机科学 人工智能 旋光法 聚类分析 模式识别(心理学) 雷达成像 逆合成孔径雷达 方位角 计算机视觉 遥感 雷达 物理 光学 地质学 电信
作者
Zhongling Huang,Mihai Datcu,Zongxu Pan,Xiaolan Qiu,Bin Lei
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:59 (4): 3054-3071 被引量:12
标识
DOI:10.1109/tgrs.2020.3014335
摘要

Understanding the physical properties and scattering mechanisms contributes to synthetic aperture radar (SAR) image interpretation. For single-polarized SAR data, however, it is difficult to extract the physical scattering mechanisms due to lack of polarimetric information. Time-frequency analysis (TFA) on complex-valued SAR image provides extra information in frequency perspective beyond the “image” domain. Based on TFA theory, we propose to generate the subband scattering pattern for every object in complex-valued SAR image as the physical property representation, which reveals backscattering variations along slant-range and azimuth directions. In order to discover the inherent patterns and generate a scattering classification map from single-polarized SAR image, an unsupervised hierarchical deep embedding clustering (HDEC) algorithm based on TFA (HDEC-TFA) is proposed to learn the embedded features and cluster centers simultaneously and hierarchically. The polarimetric analysis result for quad-pol SAR images is applied as reference data of physical scattering mechanisms. In order to compare the scattering classification map obtained from single-polarized SAR data with the physical scattering mechanism result from full-polarized SAR, and to explore the relationship and similarity between them in a quantitative way, an information theory based evaluation method is proposed. We take Gaofen-3 quad-polarized SAR data for experiments, and the results and discussions demonstrate that the proposed method is able to learn valuable scattering properties from single-polarization complex-valued SAR data, and to extract some specific targets as well as polarimetric analysis. At last, we give a promising prospect to future applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助科研通管家采纳,获得10
刚刚
完美世界应助科研通管家采纳,获得30
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
华仔应助科研通管家采纳,获得10
刚刚
刚刚
Hello应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
QOP应助科研通管家采纳,获得10
1秒前
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
Yany发布了新的文献求助10
1秒前
小青椒应助科研通管家采纳,获得100
1秒前
LoeX完成签到,获得积分10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
烟花应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得10
2秒前
叶帆发布了新的文献求助10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
2秒前
上官若男应助科研通管家采纳,获得30
2秒前
852应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
七怪应助科研通管家采纳,获得80
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
dd完成签到,获得积分10
2秒前
搜集达人应助科研通管家采纳,获得10
3秒前
3秒前
絮絮完成签到,获得积分10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
无花果应助科研通管家采纳,获得10
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5352537
求助须知:如何正确求助?哪些是违规求助? 4485363
关于积分的说明 13962944
捐赠科研通 4385316
什么是DOI,文献DOI怎么找? 2409378
邀请新用户注册赠送积分活动 1401795
关于科研通互助平台的介绍 1375406