HDEC-TFA: An Unsupervised Learning Approach for Discovering Physical Scattering Properties of Single-Polarized SAR Image

合成孔径雷达 散射 计算机科学 人工智能 旋光法 聚类分析 模式识别(心理学) 雷达成像 逆合成孔径雷达 方位角 计算机视觉 遥感 雷达 物理 光学 地质学 电信
作者
Zhongling Huang,Mihai Datcu,Zongxu Pan,Xiaolan Qiu,Bin Lei
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:59 (4): 3054-3071 被引量:12
标识
DOI:10.1109/tgrs.2020.3014335
摘要

Understanding the physical properties and scattering mechanisms contributes to synthetic aperture radar (SAR) image interpretation. For single-polarized SAR data, however, it is difficult to extract the physical scattering mechanisms due to lack of polarimetric information. Time-frequency analysis (TFA) on complex-valued SAR image provides extra information in frequency perspective beyond the “image” domain. Based on TFA theory, we propose to generate the subband scattering pattern for every object in complex-valued SAR image as the physical property representation, which reveals backscattering variations along slant-range and azimuth directions. In order to discover the inherent patterns and generate a scattering classification map from single-polarized SAR image, an unsupervised hierarchical deep embedding clustering (HDEC) algorithm based on TFA (HDEC-TFA) is proposed to learn the embedded features and cluster centers simultaneously and hierarchically. The polarimetric analysis result for quad-pol SAR images is applied as reference data of physical scattering mechanisms. In order to compare the scattering classification map obtained from single-polarized SAR data with the physical scattering mechanism result from full-polarized SAR, and to explore the relationship and similarity between them in a quantitative way, an information theory based evaluation method is proposed. We take Gaofen-3 quad-polarized SAR data for experiments, and the results and discussions demonstrate that the proposed method is able to learn valuable scattering properties from single-polarization complex-valued SAR data, and to extract some specific targets as well as polarimetric analysis. At last, we give a promising prospect to future applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
陈豆豆完成签到,获得积分10
1秒前
simendl发布了新的文献求助10
1秒前
tony完成签到,获得积分10
1秒前
深情安青应助Tyler采纳,获得10
1秒前
Darline完成签到 ,获得积分10
2秒前
Ava应助qiu采纳,获得10
2秒前
牛马婕发布了新的文献求助10
2秒前
天外来物发布了新的文献求助10
2秒前
1210xi完成签到,获得积分10
3秒前
科研猪发布了新的文献求助10
3秒前
3秒前
3秒前
酸菜余完成签到,获得积分10
3秒前
3秒前
科研小柠檬完成签到,获得积分10
3秒前
3秒前
平淡路人完成签到,获得积分10
3秒前
Elijah完成签到,获得积分10
4秒前
桐桐应助戴佳伟彩笔采纳,获得10
4秒前
spirit完成签到 ,获得积分10
4秒前
风信子完成签到 ,获得积分0
4秒前
此去经年完成签到,获得积分10
4秒前
笑点低的靳完成签到,获得积分10
4秒前
我是老大应助wslingling采纳,获得10
5秒前
紧张的谷槐完成签到,获得积分10
5秒前
是鸢完成签到,获得积分10
5秒前
orixero应助理想沦陷采纳,获得10
5秒前
舒心新儿应助OFF采纳,获得10
6秒前
瘦瘦的鬼神完成签到,获得积分10
6秒前
7秒前
fsxadada123完成签到,获得积分10
7秒前
今后应助煎饼狗子采纳,获得10
7秒前
7秒前
外向的芒果应助insane采纳,获得30
7秒前
7秒前
8秒前
FashionBoy应助Elijah采纳,获得10
8秒前
kk完成签到 ,获得积分10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5510498
求助须知:如何正确求助?哪些是违规求助? 4605134
关于积分的说明 14492967
捐赠科研通 4540342
什么是DOI,文献DOI怎么找? 2487940
邀请新用户注册赠送积分活动 1470152
关于科研通互助平台的介绍 1442632