HDEC-TFA: An Unsupervised Learning Approach for Discovering Physical Scattering Properties of Single-Polarized SAR Image

合成孔径雷达 散射 计算机科学 人工智能 旋光法 聚类分析 模式识别(心理学) 雷达成像 逆合成孔径雷达 方位角 计算机视觉 遥感 雷达 物理 光学 地质学 电信
作者
Zhongling Huang,Mihai Datcu,Zongxu Pan,Xiaolan Qiu,Bin Lei
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:59 (4): 3054-3071 被引量:12
标识
DOI:10.1109/tgrs.2020.3014335
摘要

Understanding the physical properties and scattering mechanisms contributes to synthetic aperture radar (SAR) image interpretation. For single-polarized SAR data, however, it is difficult to extract the physical scattering mechanisms due to lack of polarimetric information. Time-frequency analysis (TFA) on complex-valued SAR image provides extra information in frequency perspective beyond the “image” domain. Based on TFA theory, we propose to generate the subband scattering pattern for every object in complex-valued SAR image as the physical property representation, which reveals backscattering variations along slant-range and azimuth directions. In order to discover the inherent patterns and generate a scattering classification map from single-polarized SAR image, an unsupervised hierarchical deep embedding clustering (HDEC) algorithm based on TFA (HDEC-TFA) is proposed to learn the embedded features and cluster centers simultaneously and hierarchically. The polarimetric analysis result for quad-pol SAR images is applied as reference data of physical scattering mechanisms. In order to compare the scattering classification map obtained from single-polarized SAR data with the physical scattering mechanism result from full-polarized SAR, and to explore the relationship and similarity between them in a quantitative way, an information theory based evaluation method is proposed. We take Gaofen-3 quad-polarized SAR data for experiments, and the results and discussions demonstrate that the proposed method is able to learn valuable scattering properties from single-polarization complex-valued SAR data, and to extract some specific targets as well as polarimetric analysis. At last, we give a promising prospect to future applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小小发布了新的文献求助10
刚刚
zzzzzzzzzzzz完成签到,获得积分10
刚刚
Joy发布了新的文献求助10
刚刚
无花果应助时空掌门人采纳,获得10
1秒前
Kissshot发布了新的文献求助10
1秒前
1秒前
1秒前
IX完成签到,获得积分10
2秒前
yunsww完成签到,获得积分10
4秒前
5秒前
yijiubingshi发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
呦呦发布了新的文献求助10
7秒前
perfunctory发布了新的文献求助10
8秒前
9秒前
两只鱼完成签到,获得积分10
9秒前
Singularity应助Blue采纳,获得10
9秒前
老不靠谱发布了新的文献求助10
9秒前
搜集达人应助延文星采纳,获得10
10秒前
田様应助满意静丹采纳,获得10
10秒前
10秒前
10秒前
10秒前
蜜蜜发布了新的文献求助10
11秒前
wenwen发布了新的文献求助20
11秒前
Orange应助xzh采纳,获得10
11秒前
wangxr完成签到 ,获得积分10
11秒前
Liiw完成签到,获得积分10
12秒前
善学以致用应助李老头采纳,获得10
12秒前
YQ完成签到,获得积分10
13秒前
舒适不平完成签到,获得积分20
13秒前
rosalieshi应助qcl采纳,获得30
13秒前
14秒前
天天快乐应助Godspeed采纳,获得10
14秒前
Owen应助月影采纳,获得20
14秒前
15秒前
15秒前
15秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3053115
求助须知:如何正确求助?哪些是违规求助? 2710358
关于积分的说明 7421333
捐赠科研通 2354967
什么是DOI,文献DOI怎么找? 1246568
科研通“疑难数据库(出版商)”最低求助积分说明 606146
版权声明 595975