燃烧
硫黄
自燃
化学
热力学
动能
有机化学
量子力学
物理
作者
Chenglang Xiang,Hui Liu,Jie Mu,Zhihui Lang,Haining Wang,Rongshan Nie,Fanyu Kong
出处
期刊:ACS omega
[American Chemical Society]
日期:2020-08-04
卷期号:5 (32): 20618-20629
被引量:17
标识
DOI:10.1021/acsomega.0c02884
摘要
The spontaneous combustion of the sulfur concentrate is the main hazard faced in ore storage bins. To understand the thermodynamic characteristics of spontaneous combustion of the sulfur concentrate and test whether the kinetic compensation effects are present in the spontaneous combustion process of the sulfur concentrate, typical sulfur concentrate samples were selected as the research object, and thermogravimetric experiments were carried out under an air atmosphere at heating rates of 5, 10, and 15 K/min. On this basis, the contributions of different reaction models to the mass change during the spontaneous combustion of the sulfur concentrate, as well as the thermodynamic model and kinetic compensation effect, are analyzed. The results show that solid-phase combustion contributes the most to mass loss among different mechanisms of the reaction between the sulfur concentrate and oxygen. The contributions of reaction models to mass loss are affected by the different heating rates, and the contribution of solid-phase combustion to mass loss increases with increasing heating rates. The Malek method is used to obtain the kinetic model of the spontaneous combustion of the sulfur concentrate, and its mechanism function changes from a chemical reaction model to a three-dimensional diffusion model. There is a kinetic compensation effect in the spontaneous combustion process of the sulfur concentrate, and the level of the kinetic compensation line may be one of the bases for distinguishing the spontaneous combustion tendency of the sulfur concentrate.
科研通智能强力驱动
Strongly Powered by AbleSci AI