A Deep Learning Approach for Aircraft Trajectory Prediction in Terminal Airspace

计算机科学 稳健性(进化) 弹道 轨迹优化 序列(生物学) 编码(内存) 人工智能 解码方法 算法 天文 遗传学 生物化学 生物 基因 物理 化学
作者
Weili Zeng,Zhibin Quan,Ziyu Zhao,Chao Xie,Xiaobo Lu
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 151250-151266 被引量:54
标识
DOI:10.1109/access.2020.3016289
摘要

Current state-of-the-art trajectory methods do not perform well in the terminal airspace that surrounds an airport due to its complex airspace structure and the frequently changing flight postures of aircraft. Since an aircraft that takes off or lands in an airport must follow a specified procedure, this paper will learn a data-driven trajectory prediction model from many historical trajectories to improve the accuracy and robustness of trajectory prediction in the terminal airspace. A regularization method is utilized to reconstruct each aircraft trajectory to obtain a high-quality trajectory with equal time intervals and no noise. Furthermore, we formulate the 4D trajectory prediction problem as a sequence-to-sequence learning problem, and we propose a sequence-to-sequence deep long short-term memory network (SS-DLSTM) for trajectory prediction, which can effectively capture the long and short temporal dependencies and the repetitive nature among trajectories. The proposed model is composed of an encoding module and a decoding module, where the encoding mode realizes the feature representation of historical trajectories, while the decoding module accepts the output of the encoding module as its initial input and recursively outputs the predicted trajectory sequence. The proposed method is applied to a dataset for the terminal airspace in Guangzhou, China. The experimental results demonstrate that our approach has relatively high robustness and outperforms mainstream data-driven trajectory prediction methods in terms of accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NNUsusan发布了新的文献求助10
1秒前
1秒前
诚心的访蕊完成签到 ,获得积分10
3秒前
kc135完成签到,获得积分10
3秒前
4秒前
淡淡的白羊完成签到 ,获得积分10
4秒前
4秒前
yyyy完成签到,获得积分10
5秒前
叶子完成签到 ,获得积分10
5秒前
xzm完成签到,获得积分20
5秒前
左右兮完成签到,获得积分10
5秒前
drgaoying完成签到,获得积分10
6秒前
希望天下0贩的0应助feng采纳,获得10
6秒前
7秒前
QiWei完成签到 ,获得积分10
8秒前
Jiayou Zhang发布了新的文献求助10
8秒前
YY发布了新的文献求助10
8秒前
8秒前
科研通AI5应助优美的迎松采纳,获得10
9秒前
CodeCraft应助温匕采纳,获得30
10秒前
李健的小迷弟应助曦忘采纳,获得10
10秒前
10秒前
慕青应助whyzz采纳,获得10
11秒前
湫殇发布了新的文献求助10
11秒前
12秒前
guojingjing发布了新的文献求助10
13秒前
13秒前
若冷完成签到,获得积分10
13秒前
14秒前
14秒前
坚强冷荷完成签到 ,获得积分10
14秒前
lhj发布了新的文献求助10
16秒前
Lucas应助大哥爱发文章采纳,获得10
16秒前
16秒前
Er魁完成签到,获得积分10
18秒前
kakafan完成签到,获得积分10
19秒前
温暖伟祺发布了新的文献求助10
19秒前
华仔应助sc采纳,获得10
20秒前
ss发布了新的文献求助30
20秒前
柠檬渝完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5190777
求助须知:如何正确求助?哪些是违规求助? 4374351
关于积分的说明 13620929
捐赠科研通 4228224
什么是DOI,文献DOI怎么找? 2319156
邀请新用户注册赠送积分活动 1317684
关于科研通互助平台的介绍 1267689