Pharmacoinformatics-based identification of potential bioactive compounds against Ebola virus protein VP24

埃博拉病毒 对接(动物) VP40型 自动停靠 病毒学 埃博拉病毒 病毒 药物发现 病毒蛋白 小分子 计算生物学 生物 医学 生物信息学 生物信息学 生物化学 基因 护理部
作者
Samuel K. Kwofie,Emmanuel Broni,Joshua Teye,Erasmus Quansah,Ibrahim Issah,Michael D. Wilson,Whelton A. Miller,Elvis K. Tiburu,Joseph Humphrey Kofi Bonney
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:113: 103414-103414 被引量:31
标识
DOI:10.1016/j.compbiomed.2019.103414
摘要

The impact of Ebola virus disease (EVD) is devastating with concomitant high fatalities. Currently, various drugs and vaccines are at different stages of development, corroborating the need to identify new therapeutic molecules. The VP24 protein of the Ebola virus (EBOV) plays a key role in the pathology and replication of the EVD. The VP24 protein interferes with the host immune response to viral infections and promotes nucleocapsid formation, thus making it a viable drug target. This study sought to identify putative lead compounds from the African flora with potential to inhibit the activity of the EBOV VP24 protein using pharmacoinformatics and molecular docking. An integrated library of 7675 natural products originating from Africa obtained from the AfroDB and NANPDB databases, as well as known inhibitors were screened against VP24 (PDB ID: 4M0Q) utilising AutoDock Vina after energy minimization using GROMACS. The top 19 compounds were physicochemically and pharmacologically profiled using ADMET Predictor™, SwissADME and DataWarrior. The mechanisms of binding between the molecules and EBOV VP24 were characterised using LigPlot+. The performance of the molecular docking was evaluated by generating a receiver operating characteristic (ROC) by screening known inhibitors and decoys against EBOV VP24. The prediction of activity spectra for substances (PASS) and machine learning-based Open Bayesian models were used to predict the anti-viral and anti-Ebola activity of the molecules, respectively. Four natural products, namely, ZINC000095486070, ZINC000003594643, ZINC000095486008 and sarcophine were found to be potential EBOV VP24-inhibitiory molecules. The molecular docking results showed that ZINC000095486070 had high binding affinity of −9.7 kcal/mol with EBOV VP24, which was greater than those of the known VP24-inhibitors used as standards in the study including Ouabain, Nilotinib, Clomiphene, Torimefene, Miglustat and BCX4430. The area under the curve of the generated ROC for evaluating the performance of the molecular docking was 0.77, which was considered acceptable. The predicted promising molecules were also validated using induced-fit docking with the receptor using Schrödinger and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) calculations. The molecules had better binding mechanisms and were pharmacologically profiled to have plausible efficacies, negligible toxicity as well as suitable for designing anti-Ebola scaffolds. ZINC000095486008 and sarcophine (NANPDB135) were predicted to possess anti-viral activity, while ZINC000095486070 and ZINC000003594643 to be anti-Ebola compounds. The identified compounds are potential inhibitors worthy of further development as EBOV biotherapeutic agents. The scaffolds of the compounds could also serve as building blocks for designing novel Ebola inhibitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nice1025完成签到,获得积分10
刚刚
刚刚
阿凡人完成签到,获得积分10
刚刚
wanghao婷发布了新的文献求助10
1秒前
鹅鹅鹅完成签到,获得积分10
1秒前
2秒前
2秒前
ppzy发布了新的文献求助10
2秒前
CodeCraft应助Gotyababy采纳,获得10
2秒前
3秒前
仁爱听露完成签到,获得积分10
3秒前
Akim应助marco采纳,获得10
3秒前
3秒前
松谦发布了新的文献求助10
3秒前
萤火虫完成签到,获得积分10
4秒前
4秒前
无花果应助天真小蚂蚁采纳,获得10
4秒前
4秒前
hanxi发布了新的文献求助10
4秒前
bkagyin应助王哪跑12采纳,获得10
5秒前
科研通AI6应助songf11采纳,获得10
6秒前
解雨洁发布了新的文献求助10
6秒前
6秒前
昵称呢发布了新的文献求助10
6秒前
7秒前
在水一方应助sesu采纳,获得10
7秒前
咚咚发布了新的文献求助20
7秒前
7秒前
无限的谷丝完成签到,获得积分20
7秒前
8秒前
吃货完成签到,获得积分10
8秒前
体贴电源完成签到 ,获得积分10
8秒前
ZL张莉发布了新的文献求助30
8秒前
8秒前
852应助张一诺021222采纳,获得10
9秒前
dd完成签到 ,获得积分10
9秒前
jenningseastera应助缺粥采纳,获得10
10秒前
10秒前
10秒前
科研通AI6应助wanghao婷采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion 300
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604100
求助须知:如何正确求助?哪些是违规求助? 4012619
关于积分的说明 12424227
捐赠科研通 3693241
什么是DOI,文献DOI怎么找? 2036105
邀请新用户注册赠送积分活动 1069230
科研通“疑难数据库(出版商)”最低求助积分说明 953709