化学
细胞凋亡
脯氨酸
细胞毒性T细胞
体外
程序性细胞死亡
膜联蛋白
立体化学
A549电池
癌细胞
癌症研究
生物化学
癌症
氨基酸
生物
遗传学
作者
Mehmet Oğuz,Alev Gul,Serdar Karakurt,Mustafa Yılmaz
标识
DOI:10.1016/j.bioorg.2019.103207
摘要
The unique conformational properties, functionality, low toxicity, and low cost make calixarene-based compounds a valuable candidate against cancer. The aim of the present study is the synthesis of the upper rim and lower rim-functionalized l-proline-based calix[4]arene derivatives and evaluation of their cytotoxic potential for human cancerous cells as well as to determine the death mechanism. Synthesized calix[4]arene (3, 8a, 8b 13a, and 13b) derivatives were characterized by different spectroscopic techniques such as 1HNMR, 13CNMR, and FTIR. In vitro effects of compounds 3, 8a, 8b, 13a and 13b were tested on human cancerous cells (HEPG2, PC-3, A-549, and DLD-1) as well as human healthy epithelium cell (PNT1A). Results show that compounds 3, 8a, 8b and 13b have cytotoxic potential on human colorectal carcinoma cells (DLD-1) with IC50 values of 43 µM, 45.2 µM, 64.57 µM, and 29.35 µM respectively. Apoptosis ratios of cell death were investigated with flow cytometer using 7-AAD and Annexin-V as markers. Cytotoxic potential of 8a was found to be higher due to increased apoptosis, when compared with healthy cells the apoptotic cell death was significantly (p < 0.0001) increased up to 1.7-fold and 2.4-fold in DLD-1 and A549 cells, respectively. In conclusion, these l-proline derived calix[4]arenes with their selective cytotoxic potential on human cancerous cells may be a potential candidate for the treatment of human CRC and lung cancer.
科研通智能强力驱动
Strongly Powered by AbleSci AI