坏死性下垂
mTORC1型
TFEB
自噬
细胞生物学
磷酸化
化学
雷帕霉素的作用靶点
程序性细胞死亡
生物
细胞凋亡
生物化学
蛋白激酶B
作者
Koki Abe,Toshiyuki Yano,Masaya Tanno,Takayuki Miki,Atsushi Kuno,Tatsuya Sato,Hidemichi Kouzu,Kei Nakata,Wataru Ohwada,Yukishige Kimura,Hirohito Sugawara,Satoru Shibata,Yusuke Igaki,Shoya Ino,Tetsuji Miura
标识
DOI:10.1016/j.bbadis.2019.165552
摘要
Accumulating evidence indicates that necroptosis contributes to cardiovascular diseases. We recently reported suppression of autophagy by necroptotic signals in cardiomyocytes and protective action of rapamycin. Here we examined the mechanism by which mTORC1 inhibition protects cardiomyocytes from necroptosis. Necroptosis of H9c2 cells was induced by treatment with tumor necrotic factor-α (TNF) and z-VAD-fmk (zVAD), and the extent of necroptosis was determined as the level of LDH release (as % of total). TNF/zVAD increased RIP1-RIP3 interaction and LDH release from 3.4 ± 1.3% to 46.1 ± 2.3%. The effects of TNF/zVAD were suppressed by an mTORC1 inhibitor, rapamycin, and an mTORC1/2 inhibitor, Ku-0063794, but not by a p70s6K inhibitor, PF-4708671. Protection by rapamycin was not abolished by inhibitors of TAK1, IKKα/β, and cIAP, endogenous necroptosis suppressors upstream of RIP1. Rapamycin and Ku-0063794 suppressed TNF/zVAD-induced RIP1-Ser166 phosphorylation and increased phosphorylation of RIP1-Ser320, an inhibitory phosphorylation site, though such an effect on RIP1-Ser320 was not observed for PF-4708671. Protective effects of rapamycin on TNF/zVAD-induced RIP1-RIP3 binding and necroptosis were undetected in cells transfected with RIP1-S320A. In TNF/zVAD-treated cells, rapamycin and a RIP1 inhibitor, necrostatin-1, increased nuclear localization of transcriptional factor EB (TFEB) and promoted autolysosome formation from autophagosomes in a TFEB-dependent manner. Knockdown of TFEB expression attenuated rapamycin-induced protection from necroptosis in TNF/zVAD-treated cells. The results suggest that mTORC1 inhibition promotes autophagy and protects cardiomyocytes from necroptosis by a TFEB-dependent mechanism and that inhibition of RIP1 by increased phosphorylation at Ser320 is crucial in the cardiomyocyte protection afforded by mTORC1 inhibition.
科研通智能强力驱动
Strongly Powered by AbleSci AI