Molecular Dynamics Simulation of Ultra-Fast Phase Transition in Water Nanofilms

分子动力学 接触角 莫尔斯势 爆炸物 沸腾 蒸发 材料科学 基质(水族馆) 相(物质) 化学物理 伦纳德琼斯势 Atom(片上系统) 化学 热力学 原子物理学 复合材料 计算化学 物理 有机化学 嵌入式系统 地质学 海洋学 计算机科学
作者
Malcolm Porterfield,Diana‐Andra Borca‐Tasciuc
出处
期刊:Journal of heat transfer [ASME International]
卷期号:142 (11) 被引量:3
标识
DOI:10.1115/1.4047642
摘要

Abstract Molecular dynamics simulations are used to explore explosive boiling of thin water films on a gold substrate. In particular, water films of 0.7, 1.6, and 2.5 nanometer thickness were examined. Three different surface wettabilities with contact angles of 11 deg, 47 deg, and 110 deg were simulated along with substrate temperatures of 400 K, 600 K, 800 K, and 1000 K. The 11 and 47 deg contact angles were obtained using a Morse interaction potential between the water film and gold substrate while the 47 and 110 deg contact angles were obtained via a Lennard-Jones potential. Evaporation was the first mode of phase change observed in all cases and explosive boiling did not occur until the substrate reached a temperature of 800 K. When explosive boiling was present for all three contact angles, it was consistently shown to occur first for the surface with a 47 deg contact angle and Lennard-Jones potential. These results suggest that explosive boiling onset is strongly dependent on the particularities of the interaction potential. For instance, the Morse potential is smoother when compared to the Lennard-Jones potential, but has more interaction sites per molecule—two hydrogen atoms and one oxygen atom versus one oxygen atom. Thus, even when the water film reaches a higher temperature with the Morse potential, explosive boiling onset is delayed as more interaction sites have to be disrupted. These results suggest that contact angle alone is insufficient and both the interaction strength and the number of atoms interacting at the interface must be considered when investigating trends of explosive boiling with surface wettability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蓝完成签到,获得积分10
1秒前
qwert完成签到,获得积分10
1秒前
2秒前
2秒前
万能图书馆应助天明采纳,获得30
2秒前
4秒前
善学以致用应助aaashirz_采纳,获得10
4秒前
一一一发布了新的文献求助10
5秒前
zhuxl应助小九采纳,获得10
5秒前
Wenpandaen完成签到,获得积分10
6秒前
baiyixuan发布了新的文献求助20
7秒前
7秒前
等风的人发布了新的文献求助10
7秒前
SciGPT应助五氧化二磷采纳,获得10
8秒前
8秒前
9秒前
斯文败类应助元素分希怡采纳,获得10
9秒前
9秒前
科研通AI5应助salda_ssibal采纳,获得10
9秒前
sihaibo完成签到,获得积分10
10秒前
11秒前
白方明发布了新的文献求助10
12秒前
12秒前
侏罗纪世界完成签到,获得积分10
13秒前
14秒前
遇见完成签到,获得积分10
14秒前
14秒前
Maomao发布了新的文献求助10
14秒前
kyrie发布了新的文献求助10
15秒前
15秒前
16秒前
瓜瓜瓜咕完成签到,获得积分0
16秒前
wzy完成签到,获得积分10
17秒前
周凡淇发布了新的文献求助10
17秒前
song完成签到 ,获得积分10
18秒前
TK发布了新的文献求助10
18秒前
神经完成签到,获得积分20
19秒前
纯真的笑珊完成签到,获得积分10
19秒前
瓜瓜瓜咕发布了新的文献求助30
19秒前
20秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483356
求助须知:如何正确求助?哪些是违规求助? 3072736
关于积分的说明 9127609
捐赠科研通 2764309
什么是DOI,文献DOI怎么找? 1517091
邀请新用户注册赠送积分活动 701898
科研通“疑难数据库(出版商)”最低求助积分说明 700770