Molecular Dynamics Simulation of Ultra-Fast Phase Transition in Water Nanofilms

分子动力学 接触角 莫尔斯势 爆炸物 沸腾 蒸发 材料科学 基质(水族馆) 相(物质) 化学物理 伦纳德琼斯势 Atom(片上系统) 化学 热力学 原子物理学 复合材料 计算化学 物理 计算机科学 嵌入式系统 地质学 海洋学 有机化学
作者
Malcolm Porterfield,Diana‐Andra Borca‐Tasciuc
出处
期刊:Journal of heat transfer [ASME International]
卷期号:142 (11) 被引量:3
标识
DOI:10.1115/1.4047642
摘要

Abstract Molecular dynamics simulations are used to explore explosive boiling of thin water films on a gold substrate. In particular, water films of 0.7, 1.6, and 2.5 nanometer thickness were examined. Three different surface wettabilities with contact angles of 11 deg, 47 deg, and 110 deg were simulated along with substrate temperatures of 400 K, 600 K, 800 K, and 1000 K. The 11 and 47 deg contact angles were obtained using a Morse interaction potential between the water film and gold substrate while the 47 and 110 deg contact angles were obtained via a Lennard-Jones potential. Evaporation was the first mode of phase change observed in all cases and explosive boiling did not occur until the substrate reached a temperature of 800 K. When explosive boiling was present for all three contact angles, it was consistently shown to occur first for the surface with a 47 deg contact angle and Lennard-Jones potential. These results suggest that explosive boiling onset is strongly dependent on the particularities of the interaction potential. For instance, the Morse potential is smoother when compared to the Lennard-Jones potential, but has more interaction sites per molecule—two hydrogen atoms and one oxygen atom versus one oxygen atom. Thus, even when the water film reaches a higher temperature with the Morse potential, explosive boiling onset is delayed as more interaction sites have to be disrupted. These results suggest that contact angle alone is insufficient and both the interaction strength and the number of atoms interacting at the interface must be considered when investigating trends of explosive boiling with surface wettability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助ZMK采纳,获得10
1秒前
1秒前
桐桐应助shinn采纳,获得10
1秒前
1秒前
2秒前
面包发布了新的文献求助10
2秒前
2秒前
不吃香菜关注了科研通微信公众号
2秒前
负责中恶发布了新的文献求助20
2秒前
美妞儿~完成签到,获得积分10
2秒前
xiong0823完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
3秒前
QY完成签到,获得积分10
3秒前
adai发布了新的文献求助10
4秒前
英俊的铭应助代沁采纳,获得10
4秒前
5秒前
明明完成签到,获得积分10
5秒前
王惟妙完成签到 ,获得积分10
5秒前
大模型应助yy采纳,获得10
6秒前
丘比特应助英勇海采纳,获得10
6秒前
7秒前
lyy发布了新的文献求助10
7秒前
7秒前
小陈栗子完成签到,获得积分20
7秒前
7秒前
7秒前
猕猴桃发布了新的文献求助10
8秒前
8秒前
8秒前
Jasper应助梅菜菜采纳,获得10
9秒前
小贝发布了新的文献求助10
9秒前
天天快乐应助豆豆采纳,获得10
9秒前
10秒前
美好芳发布了新的文献求助10
10秒前
胡德完成签到 ,获得积分10
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776553
求助须知:如何正确求助?哪些是违规求助? 5629807
关于积分的说明 15443193
捐赠科研通 4908648
什么是DOI,文献DOI怎么找? 2641367
邀请新用户注册赠送积分活动 1589320
关于科研通互助平台的介绍 1543933