Sulfur-mediated photodeposition synthesis of NiS cocatalyst for boosting H2-evolution performance of g-C3N4 photocatalyst

光催化 制氢 硫黄 化学工程 硫化物 催化作用 材料科学 硫化镍 光化学 金属 化学 有机化学 工程类 冶金
作者
Min Wang,Jingjing Cheng,Xuefei Wang,Xuekun Hong,Jiajie Fan,Huogen Yu
出处
期刊:Chinese Journal of Catalysis [China Science Publishing & Media Ltd.]
卷期号:42 (1): 37-45 被引量:183
标识
DOI:10.1016/s1872-2067(20)63633-6
摘要

Modification of nickel sulfide cocatalysts is considered to be a promising approach for efficient enhancement of the photocatalytic hydrogen production performance of g-C3N4. Providing more NiS cocatalyst to function as active sites of g-C3N4 is still highly desirable. To realize this goal, in this work, a facile sulfur-mediated photodeposition approach was developed. Specifically, photogenerated electrons excited by visible light reduce the S molecules absorbed on g-C3N4 surface to S2−, and subsequently NiS cocatalyst is formed in situ on the g-C3N4 surface by a combination of Ni2+ and S2− due to their small solubility product constant (Ksp = 3.2 × 10−19). This approach has several advantages. The NiS cocatalyst is clearly in situ deposited on the photogenerated electron transfer sites of g-C3N4, and thus provides more active sites for H2 production. In addition, this method utilizes solar energy with mild reaction conditions at room temperature. Consequently, the synthesized NiS/g-C3N4 photocatalyst achieves excellent hydrogen generation performance with the performance of the optimal sample (244 μmol h−1 g−1) close to that of 1 wt% Pt/g-C3N4 (316 μmol h−1 g−1, a well-known excellent photocatalyst). More importantly, the present sulfur-mediated photodeposition route is versatile and facile and can be used to deposit various metal sulfides such as CoSx, CuSx and AgSx on the g-C3N4 surface, and all the resulting metal sulfide-modified g-C3N4 photocatalysts exhibit improved H2-production performance. Our study offers a novel insight for the synthesis of high-efficiency photocatalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
lucky完成签到,获得积分10
2秒前
2秒前
2秒前
YUEER完成签到,获得积分10
2秒前
cc发布了新的文献求助10
3秒前
xiaojian_291完成签到,获得积分10
4秒前
4秒前
5秒前
小花完成签到,获得积分10
5秒前
5秒前
Xieyusen发布了新的文献求助10
6秒前
Georges-09发布了新的文献求助10
6秒前
ziyuhewei完成签到,获得积分10
7秒前
7秒前
xiaotian发布了新的文献求助10
8秒前
8秒前
orixero应助zhx采纳,获得10
9秒前
量子星尘发布了新的文献求助10
11秒前
77完成签到,获得积分20
11秒前
Lishumin完成签到,获得积分10
12秒前
Leo完成签到 ,获得积分10
12秒前
葡萄糖发布了新的文献求助10
12秒前
007发布了新的文献求助10
12秒前
Dale完成签到,获得积分10
13秒前
14秒前
15秒前
16秒前
17秒前
六一发布了新的文献求助50
17秒前
Orange应助勇往直前采纳,获得10
18秒前
隐形的凡阳完成签到,获得积分10
19秒前
19秒前
zhx发布了新的文献求助10
19秒前
20秒前
天真如松发布了新的文献求助10
20秒前
叶远望发布了新的文献求助10
20秒前
21秒前
天行健发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642322
求助须知:如何正确求助?哪些是违规求助? 4758662
关于积分的说明 15017257
捐赠科研通 4800969
什么是DOI,文献DOI怎么找? 2566262
邀请新用户注册赠送积分活动 1524397
关于科研通互助平台的介绍 1483913