Continuous blood pressure measurement from one-channel electrocardiogram signal using deep-learning techniques

光容积图 计算机科学 血压 人工智能 波形 模式识别(心理学) 信号(编程语言) 人工神经网络 医学 内科学 电信 无线 雷达 程序设计语言
作者
Fen Miao,Bo Wen,Zhejing Hu,Giancarlo Fortino,Xiping Wang,Zengding Liu,Min Tang,Ye Li
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:108: 101919-101919 被引量:101
标识
DOI:10.1016/j.artmed.2020.101919
摘要

Continuous blood pressure (BP) measurement is crucial for reliable and timely hypertension detection. State-of-the-art continuous BP measurement methods based on pulse transit time or multiple parameters require simultaneous electrocardiogram (ECG) and photoplethysmogram (PPG) signals. Compared with PPG signals, ECG signals are easy to collect using wearable devices. This study examined a novel continuous BP estimation approach using one-channel ECG signals for unobtrusive BP monitoring. A BP model is developed based on the fusion of a residual network and long short-term memory to obtain the spatial-temporal information of ECG signals. The public multiparameter intelligent monitoring waveform database, which contains ECG, PPG, and invasive BP data of patients in intensive care units, is used to develop and verify the model. Experimental results demonstrated that the proposed approach exhibited an estimation error of 0.07 ± 7.77 mmHg for mean arterial pressure (MAP) and 0.01 ± 6.29 for diastolic BP (DBP), which comply with the Association for the Advancement of Medical Instrumentation standard. According to the British Hypertension Society standards, the results achieved grade A for MAP and DBP estimation and grade B for systolic BP (SBP) estimation. Furthermore, we verified the model with an independent dataset for arrhythmia patients. The experimental results exhibited an estimation error of -0.22 ± 5.82 mmHg, -0.57 ± 4.39 mmHg, and -0.75 ± 5.62 mmHg for SBP, MAP, and DBP measurements, respectively. These results indicate the feasibility of estimating BP by using a one-channel ECG signal, thus enabling continuous BP measurement for ubiquitous health care applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
内向孤菱发布了新的文献求助30
2秒前
2秒前
可可布朗尼完成签到,获得积分10
3秒前
思源应助自信笑槐采纳,获得10
4秒前
5秒前
斑比发布了新的文献求助10
6秒前
JUN发布了新的文献求助10
6秒前
7秒前
bkagyin应助澄桦采纳,获得10
7秒前
天真似狮发布了新的文献求助10
9秒前
10秒前
11秒前
科研通AI6应助厚朴采纳,获得10
11秒前
lzp完成签到 ,获得积分10
12秒前
12秒前
已知中的未知完成签到 ,获得积分10
12秒前
12秒前
chenbin1105完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
CipherSage应助大胆的魔镜采纳,获得10
13秒前
14秒前
CipherSage应助sxh采纳,获得10
14秒前
完美世界应助明芬采纳,获得10
14秒前
renxin完成签到,获得积分10
14秒前
15秒前
15秒前
15秒前
万能图书馆应助fjnm采纳,获得10
15秒前
高手发布了新的文献求助10
16秒前
小江不饿完成签到,获得积分10
16秒前
顺利的似狮完成签到,获得积分10
17秒前
李健应助renxin采纳,获得10
18秒前
52hzzz关注了科研通微信公众号
18秒前
fanfan发布了新的文献求助10
19秒前
19秒前
21秒前
21秒前
宁羽发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675369
求助须知:如何正确求助?哪些是违规求助? 4945575
关于积分的说明 15152710
捐赠科研通 4834585
什么是DOI,文献DOI怎么找? 2589541
邀请新用户注册赠送积分活动 1543247
关于科研通互助平台的介绍 1501131