超材料
耗散系统
材料科学
宽带
带隙
振动
共振(粒子物理)
声学
光学
衰减
光电子学
物理
量子力学
粒子物理学
作者
Muhammad Gulzari,C.W. Lim
出处
期刊:Journal of Vibration and Acoustics
日期:2020-06-19
卷期号:142 (6)
被引量:35
摘要
Abstract The present study deals with the analysis of dissipative multiresonant pillared and trampoline effect–enhanced elastic metamaterials for the amplification of local resonance bandgaps. The study is conducted through a finite element–based numerical technique and substantiated with a discrete mass-in-mass analytical model. The band structures and wave dispersion characteristics of the multiresonant pillars erected on a thin elastic plate foundation are analyzed. Compared to a single-resonant metamaterial, this multiresonant structure innovatively creates wider bandgaps due to the coupling of resonance frequencies of the pillar modes with the base plate. For trampoline metamaterials, a periodic array of holes is made inside the plate. The holes forge the plate to work as a compliance base that enhances the system resonance frequency through intensive vibration of pillar-plate structure resulting in further amplified local resonance bandgaps. The enlargement of bandgaps also depends upon the height of the pillar and diameter of holes. Extremely wide low-frequency bandgaps can be achieved for a larger pillar height and a bigger hole diameter. Through a frequency response study, reported bandgaps are compared and an infinite unit cell model (band structure) is validated. The introduction of material loss factor (material damping) resulted in a broadband vibration attenuation zone spread throughout the frequency spectrum. Compared to a standard multiresonant pillared-plate model, the bandgap amplification caused by the trampoline effect induces a relatively larger bandwidth, and this superior characteristic together with the dissipative nature of the medium may facilitate potential design outcomes for manipulating subwavelength metamaterial properties over a broad range of frequencies.
科研通智能强力驱动
Strongly Powered by AbleSci AI