湿度
电容感应
石墨烯
材料科学
跟踪(教育)
计算机科学
可穿戴计算机
蒸腾作用
接口(物质)
纳米技术
环境科学
嵌入式系统
复合材料
化学
心理学
物理
操作系统
热力学
光合作用
生物化学
毛细管作用
毛细管数
教育学
作者
Lingyi Lan,Xianhao Le,Hanyong Dong,Jin Xie,Yibin Ying,Jianfeng Ping
标识
DOI:10.1016/j.bios.2020.112360
摘要
The rapidly growing demand for humidity sensing in various applications such as noninvasive epidermal sensing, water status tracking of plants, and environmental monitoring has triggered the development of high-performance humidity sensors. In particular, timely communication with plants to understand their physiological status may facilitate preventing negative influence of environmental stress and enhancing agricultural output. In addition, precise humidity sensing at bio-interface requires the sensor to be both flexible and stable. However, challenges still exist for the realization of efficient and large-scale production of flexible humidity sensors for bio-interface applications. Here, a convenient, effective, and robust method for massive production of flexible and wearable humidity sensor is proposed, using laser direct writing technology to produce laser-induced graphene interdigital electrode (LIG-IDE). Compared to previous methods, this strategy abandons the complicated and costly procedures for traditional IDE preparation. Using graphene oxide (GO) as the humidity-sensitive material, a flexible capacitive-type GO-based humidity sensor with low hysteresis, high sensitivity (3215.25 pF/% RH), and long-term stability (variation less than ± 1%) is obtained. These superior properties enable the sensor with multifunctional applications such as noncontact humidity sensing and human breath monitoring. In addition, this flexible humidity sensor can be directly attached onto the plant leaves for real-time and long-term tracking transpiration from the stomata, without causing any damage to plants, making it a promising candidate for next-generation electronics for intelligent agriculture.
科研通智能强力驱动
Strongly Powered by AbleSci AI