纳米材料基催化剂
过电位
分解水
等离子体子
材料科学
纳米颗粒
催化作用
表面等离子共振
纳米技术
表面等离子体子
化学工程
光电子学
电极
光催化
化学
电化学
物理化学
生物化学
工程类
作者
Dong Li,Jie Lao,Chunli Jiang,Chunhua Luo,Ruijuan Qi,Hechun Lin,Rong Huang,Geoffrey I. N. Waterhouse,Hui Peng
标识
DOI:10.1016/j.ijhydene.2019.10.041
摘要
Hydrogen production from water splitting through electrocatalytic or photoelectrochemical route shows great potential for renewable energy conversion. Herein, the plasmon-enhanced photoelectrical nanocatalysts (NCs) have been successfully developed by Au nanoparticle-decorated Bi2Se3 nanoflowers ([email protected]2Se3 NFs) as catalysts for hydrogen evolution reaction (HER), leading to a more than 3-fold increase of current under excitation of Au localized surface plasmon resonance (LSPR) and affording a markedly decreased overpotential of 375 mV at a current density of 10 mA cm−2. The HER enhancement can be largely attributed to effective electron-charge separation and the increase of carrier density in Bi2Se3 induced by the injection of hot electrons of Au nanoparticles. Meanwhile, Bi2Se3 nanoflowers (NFs), a kind of topological insulators, possess gapless edges on boundary and show metallic character on surface, providing a path for the flow of electrons in the electrocatalytic system. This study opens up a new avenue towards the design of higher energy conversion catalytic water splitting systems with the assistance of light energy, which could increase of HER catalysis efficiency by plasmonic excitation.
科研通智能强力驱动
Strongly Powered by AbleSci AI