骨骼肌
材料科学
细胞外基质
生物物理学
生物医学工程
基质(化学分析)
心肌细胞
细胞外
细胞生物学
细胞外小泡
生物
解剖
医学
复合材料
作者
Fabio Magarotto,Alberto Sgrò,Agner Henrique Dorigo Hochuli,Marina Andreetta,Michele Grassi,Mattia Saggioro,Leonardo Nogara,Anna Maria Tolomeo,Riccardo Francescato,Federica Collino,Giuseppe Germanò,Federico Caicci,Edoardo Maghin,Martina Piccoli,Marcin Jurga,Bert Blaauw,Piergiorgio Gamba,Maurizio Muraca,Michela Pozzobon
出处
期刊:Biomaterials
[Elsevier BV]
日期:2021-01-08
卷期号:269: 120653-120653
被引量:23
标识
DOI:10.1016/j.biomaterials.2021.120653
摘要
Biological scaffolds derived from decellularized tissues are being investigated as a promising approach to repair volumetric muscle losses (VML). Indeed, extracellular matrix (ECM) from decellularized tissues is highly biocompatible and mimics the original tissue. However, the development of fibrosis and the muscle stiffness still represents a major problem. Intercellular signals mediating tissue repair are conveyed via extracellular vesicles (EVs), biologically active nanoparticles secreted by the cells. This work aimed at using muscle ECM and human EVs derived from Wharton Jelly mesenchymal stromal cells (MSC EVs) to boost tissue regeneration in a VML murine model. Mice transplanted with muscle ECM and treated with PBS or MSC EVs were analyzed after 7 and 30 days. Flow cytometry, tissue analysis, qRT-PCR and physiology test were performed. We demonstrated that angiogenesis and myogenesis were enhanced while fibrosis was reduced after EV treatment. Moreover, the inflammation was directed toward tissue repair. M2-like, pro-regenerative macrophages were significantly increased in the MSC EVs treated group compared to control. Strikingly, the histological improvements were associated with enhanced functional recovery. These results suggest that human MSC EVs can be a naturally-derived boost able to ameliorate the efficacy of tissue-specific ECM in muscle regeneration up to the restored tissue function.
科研通智能强力驱动
Strongly Powered by AbleSci AI