乙酰化
化学
细胞凋亡
癌症研究
多酚
炎症
生物化学
药理学
医学
免疫学
抗氧化剂
基因
作者
Suwen Liu,Yuan Fang,Jincheng Yu,Xuedong Chang
摘要
Diabetic retinopathy is a major complication in patients with diabetes. Herein, we investigate how hawthorn polyphenol extract (HPE) affects high glucose-induced oxidation, inflammation, and apoptosis in ARPE-19 cells. HPLC-MS/MS was used to determine HPE content and composition. Reactive oxygen species (ROS) production was assessed using fluorescence microscopy, while glucose-induced gene and protein expressions were analyzed using real-time PCR and western blotting in cells transfected with miR-34a mimics. We found that treating cells with 10 μg/ml of HPE, 30 μM procyanidin B2, chlorogenic acid, epicatechin, or resveratrol (positive control) significantly reduced ROS production and decreased apoptosis and inflammation-related factors (p < .01). Moreover, the expression level of SIRT1 was increased, while that of acetylated NF-κB p65 and p53 proteins was decreased. These data suggest that HPE can inhibit oxidative damage, inflammation, and apoptosis through the AMPK/SIRT1/NF-κB pathway, and decrease miR-34a/SIRT1/p53 pathway activation in ARPE-19 cells, thereby demonstrating a potential use as a food additive to mitigate hyperglycemia-induced retinal damage. PRACTICAL APPLICATIONS: Hawthorn polyphenol extract (HPE) significantly reduced ROS levels, apoptosis, and the expression of inflammation-related factors in ARPE-19 cells. HPE also inhibited the AMPK/SIRT1/NF-κB and miR-34a/SIRT1/p53 pathways, which are involved in hyperglycemia-induced inflammation and apoptosis of ARPE-19 cells by regulating acetylation. Thus, HPE, as a potential food additive, may mitigate hyperglycemia-induced retinal damage.
科研通智能强力驱动
Strongly Powered by AbleSci AI