Origins of structural and electronic transitions in disordered silicon

无定形固体 多形性 背景(考古学) 化学物理 微晶 非晶硅 材料科学 原子单位 相(物质) 纳米技术 结晶学 晶体硅 物理 化学 光电子学 冶金 古生物学 生物 量子力学
作者
Volker L. Deringer,Noam Bernstein,Gábor Cśanyi,Chiheb Ben Mahmoud,Michele Ceriotti,Mark Wilson,D. A. Drabold,Stephen R. Elliott
出处
期刊:Nature [Springer Nature]
卷期号:589 (7840): 59-64 被引量:265
标识
DOI:10.1038/s41586-020-03072-z
摘要

Structurally disordered materials pose fundamental questions1–4, including how different disordered phases (‘polyamorphs’) can coexist and transform from one phase to another5–9. Amorphous silicon has been extensively studied; it forms a fourfold-coordinated, covalent network at ambient conditions and much-higher-coordinated, metallic phases under pressure10–12. However, a detailed mechanistic understanding of the structural transitions in disordered silicon has been lacking, owing to the intrinsic limitations of even the most advanced experimental and computational techniques, for example, in terms of the system sizes accessible via simulation. Here we show how atomistic machine learning models trained on accurate quantum mechanical computations can help to describe liquid–amorphous and amorphous–amorphous transitions for a system of 100,000 atoms (ten-nanometre length scale), predicting structure, stability and electronic properties. Our simulations reveal a three-step transformation sequence for amorphous silicon under increasing external pressure. First, polyamorphic low- and high-density amorphous regions are found to coexist, rather than appearing sequentially. Then, we observe a structural collapse into a distinct very-high-density amorphous (VHDA) phase. Finally, our simulations indicate the transient nature of this VHDA phase: it rapidly nucleates crystallites, ultimately leading to the formation of a polycrystalline structure, consistent with experiments13–15 but not seen in earlier simulations11,16–18. A machine learning model for the electronic density of states confirms the onset of metallicity during VHDA formation and the subsequent crystallization. These results shed light on the liquid and amorphous states of silicon, and, in a wider context, they exemplify a machine learning-driven approach to predictive materials modelling. Machine learning models enable atomistic simulations of phase transitions in amorphous silicon, predict electronic fingerprints, and show that the pressure-induced crystallization occurs over three distinct stages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
加鲁鲁发布了新的文献求助10
刚刚
刚刚
刚刚
刚刚
1秒前
田様应助ccc采纳,获得10
3秒前
dnchenchen发布了新的文献求助10
3秒前
3秒前
3秒前
小白完成签到,获得积分10
4秒前
5秒前
lkq发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
Ava应助haha采纳,获得10
5秒前
cdd发布了新的文献求助10
6秒前
锅锅发布了新的文献求助10
6秒前
不讲完成签到,获得积分10
7秒前
7秒前
龙龙完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
hahaha完成签到,获得积分10
8秒前
8秒前
8秒前
ai zs发布了新的文献求助10
8秒前
9秒前
9秒前
10秒前
务实白梦发布了新的文献求助30
11秒前
11秒前
xiarifeng123应助无心的海蓝采纳,获得20
11秒前
111发布了新的文献求助10
12秒前
相宜发布了新的文献求助10
12秒前
鳗鱼盼夏发布了新的文献求助10
12秒前
高兴元绿完成签到 ,获得积分10
13秒前
13秒前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 700
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 700
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3101389
求助须知:如何正确求助?哪些是违规求助? 2752795
关于积分的说明 7621022
捐赠科研通 2405111
什么是DOI,文献DOI怎么找? 1276127
科研通“疑难数据库(出版商)”最低求助积分说明 616705
版权声明 599058