Origins of structural and electronic transitions in disordered silicon

无定形固体 多形性 背景(考古学) 化学物理 微晶 非晶硅 材料科学 原子单位 相(物质) 纳米技术 结晶学 晶体硅 物理 化学 光电子学 冶金 古生物学 生物 量子力学
作者
Volker L. Deringer,Noam Bernstein,Gábor Cśanyi,Chiheb Ben Mahmoud,Michele Ceriotti,Mark Wilson,D. A. Drabold,Stephen R. Elliott
出处
期刊:Nature [Springer Nature]
卷期号:589 (7840): 59-64 被引量:265
标识
DOI:10.1038/s41586-020-03072-z
摘要

Structurally disordered materials pose fundamental questions1–4, including how different disordered phases (‘polyamorphs’) can coexist and transform from one phase to another5–9. Amorphous silicon has been extensively studied; it forms a fourfold-coordinated, covalent network at ambient conditions and much-higher-coordinated, metallic phases under pressure10–12. However, a detailed mechanistic understanding of the structural transitions in disordered silicon has been lacking, owing to the intrinsic limitations of even the most advanced experimental and computational techniques, for example, in terms of the system sizes accessible via simulation. Here we show how atomistic machine learning models trained on accurate quantum mechanical computations can help to describe liquid–amorphous and amorphous–amorphous transitions for a system of 100,000 atoms (ten-nanometre length scale), predicting structure, stability and electronic properties. Our simulations reveal a three-step transformation sequence for amorphous silicon under increasing external pressure. First, polyamorphic low- and high-density amorphous regions are found to coexist, rather than appearing sequentially. Then, we observe a structural collapse into a distinct very-high-density amorphous (VHDA) phase. Finally, our simulations indicate the transient nature of this VHDA phase: it rapidly nucleates crystallites, ultimately leading to the formation of a polycrystalline structure, consistent with experiments13–15 but not seen in earlier simulations11,16–18. A machine learning model for the electronic density of states confirms the onset of metallicity during VHDA formation and the subsequent crystallization. These results shed light on the liquid and amorphous states of silicon, and, in a wider context, they exemplify a machine learning-driven approach to predictive materials modelling. Machine learning models enable atomistic simulations of phase transitions in amorphous silicon, predict electronic fingerprints, and show that the pressure-induced crystallization occurs over three distinct stages.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yv发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
panzhongjie发布了新的文献求助10
1秒前
共享精神应助jason采纳,获得10
2秒前
longlong完成签到,获得积分10
2秒前
3秒前
left_right完成签到,获得积分10
3秒前
4秒前
执着的麦片完成签到,获得积分10
6秒前
6秒前
云不归完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
8秒前
9秒前
junxu发布了新的文献求助10
10秒前
some发布了新的文献求助10
10秒前
12秒前
坚果发布了新的文献求助10
12秒前
风趣冬瓜发布了新的文献求助10
13秒前
羊羊发布了新的文献求助10
13秒前
16秒前
田様应助大力山槐采纳,获得10
17秒前
桐桐应助科研通管家采纳,获得10
17秒前
17秒前
花卷应助科研通管家采纳,获得20
17秒前
NexusExplorer应助科研通管家采纳,获得10
17秒前
彭于彦祖应助科研通管家采纳,获得30
17秒前
Owen应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
赘婿应助科研通管家采纳,获得10
18秒前
田様应助科研通管家采纳,获得10
18秒前
qqrtqr应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
18秒前
彭于彦祖应助科研通管家采纳,获得30
18秒前
慕青应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得30
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601572
求助须知:如何正确求助?哪些是违规求助? 4687052
关于积分的说明 14847258
捐赠科研通 4681425
什么是DOI,文献DOI怎么找? 2539420
邀请新用户注册赠送积分活动 1506336
关于科研通互助平台的介绍 1471297