Origins of structural and electronic transitions in disordered silicon

无定形固体 多形性 背景(考古学) 化学物理 微晶 非晶硅 材料科学 原子单位 相(物质) 纳米技术 结晶学 晶体硅 物理 化学 光电子学 冶金 古生物学 生物 量子力学
作者
Volker L. Deringer,Noam Bernstein,Gábor Cśanyi,Chiheb Ben Mahmoud,Michele Ceriotti,Mark Wilson,D. A. Drabold,Stephen R. Elliott
出处
期刊:Nature [Nature Portfolio]
卷期号:589 (7840): 59-64 被引量:265
标识
DOI:10.1038/s41586-020-03072-z
摘要

Structurally disordered materials pose fundamental questions1–4, including how different disordered phases (‘polyamorphs’) can coexist and transform from one phase to another5–9. Amorphous silicon has been extensively studied; it forms a fourfold-coordinated, covalent network at ambient conditions and much-higher-coordinated, metallic phases under pressure10–12. However, a detailed mechanistic understanding of the structural transitions in disordered silicon has been lacking, owing to the intrinsic limitations of even the most advanced experimental and computational techniques, for example, in terms of the system sizes accessible via simulation. Here we show how atomistic machine learning models trained on accurate quantum mechanical computations can help to describe liquid–amorphous and amorphous–amorphous transitions for a system of 100,000 atoms (ten-nanometre length scale), predicting structure, stability and electronic properties. Our simulations reveal a three-step transformation sequence for amorphous silicon under increasing external pressure. First, polyamorphic low- and high-density amorphous regions are found to coexist, rather than appearing sequentially. Then, we observe a structural collapse into a distinct very-high-density amorphous (VHDA) phase. Finally, our simulations indicate the transient nature of this VHDA phase: it rapidly nucleates crystallites, ultimately leading to the formation of a polycrystalline structure, consistent with experiments13–15 but not seen in earlier simulations11,16–18. A machine learning model for the electronic density of states confirms the onset of metallicity during VHDA formation and the subsequent crystallization. These results shed light on the liquid and amorphous states of silicon, and, in a wider context, they exemplify a machine learning-driven approach to predictive materials modelling. Machine learning models enable atomistic simulations of phase transitions in amorphous silicon, predict electronic fingerprints, and show that the pressure-induced crystallization occurs over three distinct stages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
精美礼物完成签到,获得积分10
刚刚
caowen完成签到 ,获得积分10
刚刚
南瓜气气发布了新的文献求助30
1秒前
小明发布了新的文献求助10
1秒前
1秒前
Hang完成签到,获得积分10
1秒前
顺利萃完成签到,获得积分10
3秒前
3秒前
YSY完成签到,获得积分10
3秒前
嘀嘀咕咕完成签到,获得积分10
4秒前
LiuJinhui完成签到,获得积分10
6秒前
RogerCqz发布了新的文献求助10
6秒前
7秒前
9秒前
科研通AI2S应助HAG采纳,获得10
9秒前
10秒前
11秒前
glomming完成签到 ,获得积分10
12秒前
wanci应助南瓜气气采纳,获得30
14秒前
晓晓发布了新的文献求助10
14秒前
英姑应助梨理栗采纳,获得10
15秒前
东方红发布了新的文献求助10
15秒前
ah爱科研完成签到,获得积分10
16秒前
16秒前
18秒前
若梦易燃发布了新的文献求助10
18秒前
思源应助全若之采纳,获得10
18秒前
19秒前
20秒前
积极的笑柳完成签到,获得积分10
21秒前
JUNE发布了新的文献求助10
21秒前
小鱼发布了新的文献求助10
24秒前
小仙女212发布了新的文献求助10
25秒前
25秒前
可爱得喵喵叫的中华卷柏完成签到,获得积分10
26秒前
26秒前
tianmengkui完成签到,获得积分10
28秒前
轻松的万天完成签到 ,获得积分10
29秒前
x夏天完成签到 ,获得积分10
29秒前
晓晓完成签到,获得积分10
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989069
求助须知:如何正确求助?哪些是违规求助? 3531351
关于积分的说明 11253589
捐赠科研通 3269939
什么是DOI,文献DOI怎么找? 1804851
邀请新用户注册赠送积分活动 882074
科研通“疑难数据库(出版商)”最低求助积分说明 809073