Origins of structural and electronic transitions in disordered silicon

无定形固体 多形性 背景(考古学) 化学物理 微晶 非晶硅 材料科学 原子单位 相(物质) 纳米技术 结晶学 晶体硅 物理 化学 光电子学 冶金 古生物学 生物 量子力学
作者
Volker L. Deringer,Noam Bernstein,Gábor Cśanyi,Chiheb Ben Mahmoud,Michele Ceriotti,Mark Wilson,D. A. Drabold,Stephen R. Elliott
出处
期刊:Nature [Springer Nature]
卷期号:589 (7840): 59-64 被引量:265
标识
DOI:10.1038/s41586-020-03072-z
摘要

Structurally disordered materials pose fundamental questions1–4, including how different disordered phases (‘polyamorphs’) can coexist and transform from one phase to another5–9. Amorphous silicon has been extensively studied; it forms a fourfold-coordinated, covalent network at ambient conditions and much-higher-coordinated, metallic phases under pressure10–12. However, a detailed mechanistic understanding of the structural transitions in disordered silicon has been lacking, owing to the intrinsic limitations of even the most advanced experimental and computational techniques, for example, in terms of the system sizes accessible via simulation. Here we show how atomistic machine learning models trained on accurate quantum mechanical computations can help to describe liquid–amorphous and amorphous–amorphous transitions for a system of 100,000 atoms (ten-nanometre length scale), predicting structure, stability and electronic properties. Our simulations reveal a three-step transformation sequence for amorphous silicon under increasing external pressure. First, polyamorphic low- and high-density amorphous regions are found to coexist, rather than appearing sequentially. Then, we observe a structural collapse into a distinct very-high-density amorphous (VHDA) phase. Finally, our simulations indicate the transient nature of this VHDA phase: it rapidly nucleates crystallites, ultimately leading to the formation of a polycrystalline structure, consistent with experiments13–15 but not seen in earlier simulations11,16–18. A machine learning model for the electronic density of states confirms the onset of metallicity during VHDA formation and the subsequent crystallization. These results shed light on the liquid and amorphous states of silicon, and, in a wider context, they exemplify a machine learning-driven approach to predictive materials modelling. Machine learning models enable atomistic simulations of phase transitions in amorphous silicon, predict electronic fingerprints, and show that the pressure-induced crystallization occurs over three distinct stages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Fa完成签到,获得积分10
刚刚
刚刚
1秒前
Dado完成签到,获得积分10
1秒前
1秒前
xiaowu完成签到,获得积分10
1秒前
今后应助quanxia采纳,获得10
1秒前
俭朴依白完成签到,获得积分10
2秒前
爱睡午觉发布了新的文献求助10
6秒前
清爽泥猴桃完成签到,获得积分10
8秒前
9秒前
11秒前
小二郎应助啦啦啦采纳,获得10
11秒前
11秒前
11秒前
研友_LMy6kL完成签到,获得积分10
11秒前
科研通AI2S应助houl采纳,获得10
13秒前
quanxia发布了新的文献求助10
15秒前
kissssp发布了新的文献求助10
16秒前
16秒前
18秒前
18秒前
paparazzi221应助淡定小白菜采纳,获得100
19秒前
隐形曼青应助淡定小白菜采纳,获得100
19秒前
自然的听寒完成签到 ,获得积分10
21秒前
为为子完成签到 ,获得积分10
21秒前
sky完成签到 ,获得积分10
22秒前
高震博完成签到 ,获得积分10
23秒前
ZhangYunxuan发布了新的文献求助10
24秒前
啦啦啦完成签到,获得积分10
25秒前
dajiejie完成签到 ,获得积分10
26秒前
kissssp完成签到,获得积分10
27秒前
糊涂的丹南完成签到 ,获得积分10
27秒前
dandelionshun完成签到,获得积分10
33秒前
ZhangYunxuan完成签到,获得积分10
33秒前
Maggie完成签到 ,获得积分10
33秒前
团结友爱完成签到 ,获得积分10
33秒前
淡定小白菜完成签到,获得积分10
35秒前
darmy完成签到,获得积分10
35秒前
quanjia完成签到,获得积分10
38秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137539
求助须知:如何正确求助?哪些是违规求助? 2788516
关于积分的说明 7787114
捐赠科研通 2444837
什么是DOI,文献DOI怎么找? 1300071
科研通“疑难数据库(出版商)”最低求助积分说明 625796
版权声明 601023