Origins of structural and electronic transitions in disordered silicon

无定形固体 多形性 背景(考古学) 化学物理 微晶 非晶硅 材料科学 原子单位 相(物质) 纳米技术 结晶学 晶体硅 物理 化学 光电子学 冶金 古生物学 生物 量子力学
作者
Volker L. Deringer,Noam Bernstein,Gábor Cśanyi,Chiheb Ben Mahmoud,Michele Ceriotti,Mark Wilson,D. A. Drabold,Stephen R. Elliott
出处
期刊:Nature [Nature Portfolio]
卷期号:589 (7840): 59-64 被引量:265
标识
DOI:10.1038/s41586-020-03072-z
摘要

Structurally disordered materials pose fundamental questions1–4, including how different disordered phases (‘polyamorphs’) can coexist and transform from one phase to another5–9. Amorphous silicon has been extensively studied; it forms a fourfold-coordinated, covalent network at ambient conditions and much-higher-coordinated, metallic phases under pressure10–12. However, a detailed mechanistic understanding of the structural transitions in disordered silicon has been lacking, owing to the intrinsic limitations of even the most advanced experimental and computational techniques, for example, in terms of the system sizes accessible via simulation. Here we show how atomistic machine learning models trained on accurate quantum mechanical computations can help to describe liquid–amorphous and amorphous–amorphous transitions for a system of 100,000 atoms (ten-nanometre length scale), predicting structure, stability and electronic properties. Our simulations reveal a three-step transformation sequence for amorphous silicon under increasing external pressure. First, polyamorphic low- and high-density amorphous regions are found to coexist, rather than appearing sequentially. Then, we observe a structural collapse into a distinct very-high-density amorphous (VHDA) phase. Finally, our simulations indicate the transient nature of this VHDA phase: it rapidly nucleates crystallites, ultimately leading to the formation of a polycrystalline structure, consistent with experiments13–15 but not seen in earlier simulations11,16–18. A machine learning model for the electronic density of states confirms the onset of metallicity during VHDA formation and the subsequent crystallization. These results shed light on the liquid and amorphous states of silicon, and, in a wider context, they exemplify a machine learning-driven approach to predictive materials modelling. Machine learning models enable atomistic simulations of phase transitions in amorphous silicon, predict electronic fingerprints, and show that the pressure-induced crystallization occurs over three distinct stages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rong发布了新的文献求助10
1秒前
nishishui完成签到 ,获得积分10
1秒前
施宇宙发布了新的文献求助10
1秒前
1秒前
安静幻竹完成签到,获得积分10
2秒前
许红祥完成签到,获得积分10
2秒前
沙砾完成签到,获得积分10
2秒前
顾矜应助S123采纳,获得10
2秒前
2秒前
2秒前
huan发布了新的文献求助10
3秒前
4秒前
heihei完成签到,获得积分10
4秒前
打打应助gy采纳,获得10
4秒前
4秒前
梦里花落声应助976240952采纳,获得10
4秒前
5秒前
5秒前
hpc完成签到,获得积分10
5秒前
5秒前
Orange应助林子采纳,获得10
6秒前
西西完成签到,获得积分10
6秒前
6秒前
hym发布了新的文献求助10
6秒前
落后青筠完成签到 ,获得积分10
7秒前
7秒前
JC完成签到,获得积分10
7秒前
Ava应助想养一只猫采纳,获得10
7秒前
zjq完成签到,获得积分20
7秒前
gxyyyy发布了新的文献求助10
8秒前
8秒前
8秒前
bkagyin应助Young采纳,获得10
9秒前
共享精神应助了吟采纳,获得10
9秒前
9秒前
tfr06完成签到,获得积分10
9秒前
10秒前
c7完成签到,获得积分10
10秒前
a雪橙完成签到 ,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5260499
求助须知:如何正确求助?哪些是违规求助? 4421947
关于积分的说明 13764660
捐赠科研通 4296098
什么是DOI,文献DOI怎么找? 2357222
邀请新用户注册赠送积分活动 1353594
关于科研通互助平台的介绍 1314874