Comparison of beta diversity measures in clustering the high-dimensional microbial data

聚类分析 生物 计算机科学 基因组 进化生物学 微生物群 人口 星团(航天器) 计算生物学 层次聚类 高维数据聚类 β多样性
作者
Biyuan Chen,Xueyi He,Bangquan Pan,Xiaobing Zou,Na You
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:16 (2): e0246893-e0246893 被引量:10
标识
DOI:10.1371/journal.pone.0246893
摘要

The heterogeneity of disease is a major concern in medical research and is commonly characterized as subtypes with different pathogeneses exhibiting distinct prognoses and treatment effects. The classification of a population into homogeneous subgroups is challenging, especially for complex diseases. Recent studies show that gut microbiome compositions play a vital role in disease development, and it is of great interest to cluster patients according to their microbial profiles. There are a variety of beta diversity measures to quantify the dissimilarity between the compositions of different samples for clustering. However, using different beta diversity measures results in different clusters, and it is difficult to make a choice among them. Considering microbial compositions from 16S rRNA sequencing, which are presented as a high-dimensional vector with a large proportion of extremely small or even zero-valued elements, we set up three simulation experiments to mimic the microbial compositional data and evaluate the performance of different beta diversity measures in clustering. It is shown that the Kullback-Leibler divergence-based beta diversity, including the Jensen-Shannon divergence and its square root, and the hypersphere-based beta diversity, including the Bhattacharyya and Hellinger, can capture compositional changes in low-abundance elements more efficiently and can work stably. Their performance on two real datasets demonstrates the validity of the simulation experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助炙热的又夏采纳,获得10
1秒前
123Y完成签到,获得积分10
1秒前
4秒前
6秒前
善学以致用应助zhaoxiao采纳,获得10
9秒前
陈文宇发布了新的文献求助10
9秒前
后知后觉发布了新的文献求助10
9秒前
duanhuiyuan举报FBG求助涉嫌违规
10秒前
炙热的又夏完成签到,获得积分10
10秒前
11秒前
852应助病猫不发威采纳,获得10
12秒前
清风明月发布了新的文献求助10
12秒前
14秒前
NexusExplorer应助言叶采纳,获得10
16秒前
17秒前
18秒前
一看论文就困完成签到,获得积分10
18秒前
腰突患者的科研完成签到,获得积分10
19秒前
震动的曲奇完成签到,获得积分10
19秒前
22秒前
24秒前
25秒前
26秒前
CodeCraft应助124536采纳,获得30
27秒前
27秒前
wanci应助Foreverlost采纳,获得10
27秒前
27秒前
Lucas应助zhaoxiao采纳,获得10
29秒前
言叶发布了新的文献求助10
29秒前
jijibao发布了新的文献求助10
30秒前
桐桐应助碧蓝一德采纳,获得10
30秒前
夭夭完成签到,获得积分10
30秒前
31秒前
32秒前
32秒前
泡泡汽水发布了新的文献求助10
34秒前
果酱发布了新的文献求助10
34秒前
爱静静应助陈永伟采纳,获得10
36秒前
124536发布了新的文献求助30
37秒前
37秒前
高分求助中
Востребованный временем 2500
Agenda-setting and journalistic translation: The New York Times in English, Spanish and Chinese 1000
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Forensic Chemistry 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3391511
求助须知:如何正确求助?哪些是违规求助? 3002625
关于积分的说明 8804775
捐赠科研通 2689201
什么是DOI,文献DOI怎么找? 1473018
科研通“疑难数据库(出版商)”最低求助积分说明 681311
邀请新用户注册赠送积分活动 674184