吉西他滨
癌症研究
间质细胞
正电子发射断层摄影术
肿瘤微环境
胰腺癌
趋化因子受体
恶性肿瘤
CCR2型
趋化因子
病理
医学
化疗
受体
内科学
癌症
核医学
肿瘤细胞
作者
Xiaohui Zhang,Lisa Detering,Deborah Sultan,Hannah Luehmann,Lin Li,Gyu Seong Heo,Xiuli Zhang,Lanlan Lou,Patrick Grierson,Suellen Greco,Marianna B. Ruzinova,Richard Laforest,Farrokh Dehdashti,Kian‐Huat Lim,Yongjian Liu
出处
期刊:ACS Nano
[American Chemical Society]
日期:2021-01-06
卷期号:15 (1): 1186-1198
被引量:42
标识
DOI:10.1021/acsnano.0c08185
摘要
Pancreatic ductal adenocarcinoma (PDAC) is a deadly malignancy with dire prognosis due to aggressive biology, lack of effective tools for diagnosis at an early stage, and limited treatment options. Detection of PDAC using conventional radiographic imaging is limited by the dense, hypovascular stromal component and relatively scarce neoplastic cells within the tumor microenvironment (TME). The CC motif chemokine 2 (CCL2) and its cognate receptor CCR2 (CCL2/CCR2) axis are critical in fostering and maintaining this kind of TME by recruiting immunosuppressive myeloid cells such as the tumor-associated macrophages, thereby presenting an opportunity to exploit this axis for both diagnostic and therapeutic purposes. We engineered CCR2-targeting ultrasmall copper nanoparticles (Cu@CuOx) as nanovehicles not only for targeted positron emission tomography imaging by intrinsic radiolabeling with 64Cu but also for loading and delivery of the chemotherapy drug gemcitabine to PDAC. This 64Cu-radiolabeled nanovehicle allowed sensitive and accurate detection of PDAC malignancy in autochthonous genetically engineered mouse models. The ultrasmall Cu@CuOx showed efficient renal clearance, favorable pharmacokinetics, and minimal in vivo toxicity. Systemic administration of gemcitabine-loaded Cu@CuOx effectively suppressed the progression of PDAC tumors in a syngeneic xenograft mouse model and prolonged survival. These CCR2-targeted ultrasmall nanoparticles offer a promising image-guided therapeutic agent and show great potential for translation.
科研通智能强力驱动
Strongly Powered by AbleSci AI