纳米光子学
光子学
物理
光学
位置和动量空间
动量(技术分析)
连贯性(哲学赌博策略)
量子力学
财务
经济
作者
Yiwen Zhang,Maoxiong Zhao,Jiajun Wang,Wenzhe Liu,Bo Wang,Songting Hu,Guopeng Lu,Ang Chen,Jing Cui,Weiyi Zhang,Chia Wei Hsu,Xiaohan Liu,Lei Shi,Haiwei Yin,Jian Zi
标识
DOI:10.1016/j.scib.2020.12.013
摘要
The novel phenomena in nanophotonic materials, such as the angle-dependent reflection and negative refraction effect, are closely related to the photonic dispersions E(p). E(p) describes the relation between energy E and momentum p of photonic eigenmodes, and essentially determines the optical properties of materials. As E(p) is defined in momentum space (k-space), the experimental method to detect the energy distribution, that is the spectrum, in a momentum-resolved manner is highly required. In this review, the momentum-space imaging spectroscopy (MSIS) system is presented, which can directly study the spectral information in momentum space. Using the MSIS system, the photonic dispersion can be captured in one shot with high energy and momentum resolution. From the experimental momentum-resolved spectrum data, other key features of photonic eigenmodes, such as quality factors and polarization states, can also be extracted through the post-processing algorithm based on the coupled mode theory. In addition, the interference configurations of the MSIS system enable the measurement of coherence properties and phase information of nanophotonic materials, which is important for the study of light-matter interaction and beam shaping with nanostructures. The MSIS system can give the comprehensive information of nanophotonic materials, and is greatly useful for the study of novel photonic phenomena and the development of nanophotonic technologies.
科研通智能强力驱动
Strongly Powered by AbleSci AI