Learning Slimming SAR Ship Object Detector Through Network Pruning and Knowledge Distillation

计算机科学 修剪 合成孔径雷达 探测器 失败 卷积神经网络 人工智能 目标检测 特征(语言学) 深度学习 骨干网 频道(广播) 模式识别(心理学) 计算机视觉 并行计算 电信 生物 哲学 语言学 农学
作者
Shiqi Chen,Ronghui Zhan,Wei Wang,Jun Zhang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:14: 1267-1282 被引量:54
标识
DOI:10.1109/jstars.2020.3041783
摘要

The deployment of deep convolutional neural networks (CNNs) in synthetic aperture radar (SAR) ship real-time detection is largely hindered by huge computational cost. In this article, we propose a novel learning scheme for training a lightweight ship detector called Tiny YOLO-Lite, which simultaneously 1) reduces the model storage size; 2) decreases the floating point operations (FLOPs) calculation; and 3) guarantees the high accuracy with faster speed. This is achieved by self-designed backbone structure and network pruning, which enforces channel-level sparsity in the backbone network and yields a compact model. In addition, knowledge distillation is also applied to make up for the performance decline caused by network pruning. Hereinto, we propose to let small student model mimic cumbersome teacher's output to achieve improved generalization. Rather than applying vanilla full feature imitation, we redefine the distilled knowledge as the inter-relationship between different levels of feature maps and then transfer it from the large network to a smaller one. On account that the detectors should focus more on the salient regions containing ships while background interference is overwhelming, a novel attention mechanism is designed and then attached to the distilled feature for enhanced representation. Finally, extensive experiments are conducted on SSDD, HRSID, and two large-scene SAR images to verify the effectiveness of the thinner SAR ship object detector in comparison of with other CNN-based algorithms. The detection results demonstrate that the proposed detector can achieve lighter architecture with 2.8-M model size, more efficient inference (>200 fps) with low computation cost, and more accurate prediction with knowledge transfer strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
许多年以后完成签到,获得积分10
刚刚
hanxuling123完成签到,获得积分10
刚刚
dandan发布了新的文献求助10
1秒前
阿玖发布了新的文献求助10
1秒前
2秒前
李爱国应助XYWang采纳,获得10
2秒前
3秒前
3秒前
3秒前
4秒前
4秒前
狂野飞柏完成签到 ,获得积分10
4秒前
always完成签到 ,获得积分10
5秒前
6秒前
hiling完成签到 ,获得积分20
6秒前
6秒前
6秒前
7秒前
火星上雨珍完成签到,获得积分10
7秒前
8秒前
8秒前
失眠的之桃完成签到,获得积分10
8秒前
毛豆应助HHHSean采纳,获得10
9秒前
铁头发布了新的文献求助10
9秒前
melody发布了新的文献求助30
9秒前
111发布了新的文献求助10
10秒前
11秒前
12秒前
cc完成签到,获得积分10
12秒前
Derik发布了新的文献求助10
12秒前
Anjianfubai完成签到,获得积分10
12秒前
Lenny完成签到,获得积分10
12秒前
赘婿应助米娅采纳,获得10
13秒前
苏枭臣完成签到,获得积分10
13秒前
廿一发布了新的文献求助10
14秒前
14秒前
14秒前
zbsy2发布了新的文献求助10
14秒前
李元堯的狗完成签到,获得积分10
14秒前
拼搏太英完成签到,获得积分10
15秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3415318
求助须知:如何正确求助?哪些是违规求助? 3017180
关于积分的说明 8879884
捐赠科研通 2704761
什么是DOI,文献DOI怎么找? 1483001
科研通“疑难数据库(出版商)”最低求助积分说明 685630
邀请新用户注册赠送积分活动 680604