Multi-stage learning for segmentation of aortic dissections using a prior aortic anatomy simplification

分割 管腔(解剖学) 主动脉 人工智能 主动脉夹层 医学 深度学习 放射科 计算机科学 外科
作者
Duanduan Chen,Xuyang Zhang,Yuqian Mei,Fangzhou Liao,Huanming Xu,Zhenfeng Li,Qianjiang Xiao,Wei Guo,Hongkun Zhang,Tianyi Yan,Jiang Xiong,Yiannis Ventikos
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:69: 101931-101931 被引量:42
标识
DOI:10.1016/j.media.2020.101931
摘要

Aortic dissection (AD) is a life-threatening cardiovascular disease with a high mortality rate. The accurate and generalized 3-D reconstruction of AD from CT-angiography can effectively assist clinical procedures and surgery plans, however, is clinically unavaliable due to the lacking of efficient tools. In this study, we presented a novel multi-stage segmentation framework for type B AD to extract true lumen (TL), false lumen (FL) and all branches (BR) as different classes. Two cascaded neural networks were used to segment the aortic trunk and branches and to separate the dual lumen, respectively. An aortic straightening method was designed based on the prior vascular anatomy of AD, simplifying the curved aortic shape before the second network. The straightening-based method achieved the mean Dice scores of 0.96, 0.95 and 0.89 for TL, FL, and BR on a multi-center dataset involving 120 patients, outperforming the end-to-end multi-class methods and the multi-stage methods without straightening on the dual-lumen segmentation, even using different network architectures. Both the global volumetric features of the aorta and the local characteristics of the primary tear could be better identified and quantified based on the straightening. Comparing to previous deep learning methods dealing with AD segmentations, the proposed framework presented advantages in segmentation accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大青山完成签到,获得积分10
1秒前
1秒前
3秒前
3秒前
花花应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
1351567822应助科研通管家采纳,获得10
4秒前
大个应助科研通管家采纳,获得10
4秒前
yar应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
大个应助科研通管家采纳,获得10
4秒前
研友_ngkyGn应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
Theprisoners应助科研通管家采纳,获得20
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
5秒前
Orange应助科研通管家采纳,获得10
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得20
5秒前
田様应助科研通管家采纳,获得20
5秒前
Owen应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
彭于晏应助科研通管家采纳,获得30
5秒前
5秒前
Theprisoners应助科研通管家采纳,获得20
5秒前
zbbzbbzbb完成签到,获得积分10
5秒前
大模型应助lpw采纳,获得10
6秒前
startt发布了新的文献求助10
6秒前
7秒前
flyingF发布了新的文献求助10
7秒前
8秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998688
求助须知:如何正确求助?哪些是违规求助? 3538149
关于积分的说明 11273517
捐赠科研通 3277099
什么是DOI,文献DOI怎么找? 1807405
邀请新用户注册赠送积分活动 883855
科研通“疑难数据库(出版商)”最低求助积分说明 810070