Multi-stage learning for segmentation of aortic dissections using a prior aortic anatomy simplification

分割 管腔(解剖学) 主动脉 人工智能 主动脉夹层 医学 深度学习 放射科 计算机科学 外科
作者
Duanduan Chen,Xuyang Zhang,Yuqian Mei,Fangzhou Liao,Huanming Xu,Zhenfeng Li,Qianjiang Xiao,Wei Guo,Hongkun Zhang,Tianyi Yan,Jiang Xiong,Yiannis Ventikos
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:69: 101931-101931 被引量:42
标识
DOI:10.1016/j.media.2020.101931
摘要

Aortic dissection (AD) is a life-threatening cardiovascular disease with a high mortality rate. The accurate and generalized 3-D reconstruction of AD from CT-angiography can effectively assist clinical procedures and surgery plans, however, is clinically unavaliable due to the lacking of efficient tools. In this study, we presented a novel multi-stage segmentation framework for type B AD to extract true lumen (TL), false lumen (FL) and all branches (BR) as different classes. Two cascaded neural networks were used to segment the aortic trunk and branches and to separate the dual lumen, respectively. An aortic straightening method was designed based on the prior vascular anatomy of AD, simplifying the curved aortic shape before the second network. The straightening-based method achieved the mean Dice scores of 0.96, 0.95 and 0.89 for TL, FL, and BR on a multi-center dataset involving 120 patients, outperforming the end-to-end multi-class methods and the multi-stage methods without straightening on the dual-lumen segmentation, even using different network architectures. Both the global volumetric features of the aorta and the local characteristics of the primary tear could be better identified and quantified based on the straightening. Comparing to previous deep learning methods dealing with AD segmentations, the proposed framework presented advantages in segmentation accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俺爱SCI发布了新的文献求助10
1秒前
2秒前
illion1发布了新的文献求助10
2秒前
3秒前
4秒前
顾矜应助吴昊东采纳,获得10
4秒前
Lucas应助鹏哥爱科研采纳,获得10
5秒前
next完成签到,获得积分10
5秒前
6秒前
zn发布了新的文献求助10
6秒前
7秒前
xiaxia发布了新的文献求助10
7秒前
高锕666完成签到,获得积分10
8秒前
8秒前
zyy发布了新的文献求助30
9秒前
海阔云高发布了新的文献求助10
9秒前
12秒前
13秒前
高锕666发布了新的文献求助30
13秒前
14秒前
Rayeden发布了新的文献求助10
15秒前
哈哈完成签到,获得积分10
15秒前
小智完成签到,获得积分10
16秒前
吴昊东发布了新的文献求助10
16秒前
小蘑菇应助next采纳,获得10
17秒前
拉丝耶耶发布了新的文献求助30
18秒前
tayslay发布了新的文献求助10
18秒前
纯白发布了新的文献求助10
19秒前
23秒前
提速狗应助zhanghuanmiao采纳,获得50
25秒前
情怀应助diraczh采纳,获得10
25秒前
安娜完成签到,获得积分10
26秒前
27秒前
27秒前
30秒前
30秒前
YJ完成签到,获得积分10
30秒前
congcong发布了新的文献求助10
31秒前
31秒前
迷人幻波完成签到,获得积分10
32秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307081
求助须知:如何正确求助?哪些是违规求助? 2940878
关于积分的说明 8499176
捐赠科研通 2615063
什么是DOI,文献DOI怎么找? 1428599
科研通“疑难数据库(出版商)”最低求助积分说明 663482
邀请新用户注册赠送积分活动 648318