亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-stage learning for segmentation of aortic dissections using a prior aortic anatomy simplification

分割 管腔(解剖学) 主动脉 人工智能 主动脉夹层 医学 深度学习 放射科 计算机科学 外科
作者
Duanduan Chen,Xuyang Zhang,Yuqian Mei,Fangzhou Liao,Huanming Xu,Zhenfeng Li,Qianjiang Xiao,Wei Guo,Hongkun Zhang,Tianyi Yan,Jiang Xiong,Yiannis Ventikos
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:69: 101931-101931 被引量:47
标识
DOI:10.1016/j.media.2020.101931
摘要

Aortic dissection (AD) is a life-threatening cardiovascular disease with a high mortality rate. The accurate and generalized 3-D reconstruction of AD from CT-angiography can effectively assist clinical procedures and surgery plans, however, is clinically unavaliable due to the lacking of efficient tools. In this study, we presented a novel multi-stage segmentation framework for type B AD to extract true lumen (TL), false lumen (FL) and all branches (BR) as different classes. Two cascaded neural networks were used to segment the aortic trunk and branches and to separate the dual lumen, respectively. An aortic straightening method was designed based on the prior vascular anatomy of AD, simplifying the curved aortic shape before the second network. The straightening-based method achieved the mean Dice scores of 0.96, 0.95 and 0.89 for TL, FL, and BR on a multi-center dataset involving 120 patients, outperforming the end-to-end multi-class methods and the multi-stage methods without straightening on the dual-lumen segmentation, even using different network architectures. Both the global volumetric features of the aorta and the local characteristics of the primary tear could be better identified and quantified based on the straightening. Comparing to previous deep learning methods dealing with AD segmentations, the proposed framework presented advantages in segmentation accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
汉堡包应助LemonFish采纳,获得10
1秒前
有机发布了新的文献求助10
3秒前
8秒前
吕半鬼完成签到,获得积分0
9秒前
Jy发布了新的文献求助10
12秒前
12秒前
15秒前
liubai发布了新的文献求助10
20秒前
萤火虫完成签到,获得积分10
20秒前
Alimove给Alimove的求助进行了留言
21秒前
22秒前
木有完成签到 ,获得积分10
22秒前
FashionBoy应助GamePlayer采纳,获得10
23秒前
英俊的铭应助GamePlayer采纳,获得10
23秒前
SciGPT应助GamePlayer采纳,获得10
23秒前
CodeCraft应助GamePlayer采纳,获得10
23秒前
nkuwangkai完成签到,获得积分10
23秒前
顾矜应助GamePlayer采纳,获得10
23秒前
Owen应助GamePlayer采纳,获得10
23秒前
Jy完成签到,获得积分10
23秒前
Ava应助GamePlayer采纳,获得10
23秒前
核桃应助GamePlayer采纳,获得10
23秒前
可久斯基完成签到 ,获得积分10
24秒前
王啦啦发布了新的文献求助10
25秒前
药学牛马完成签到 ,获得积分10
30秒前
CodeCraft应助矢思然采纳,获得10
31秒前
蓝华完成签到 ,获得积分10
33秒前
周浩宇发布了新的文献求助10
43秒前
科研通AI5应助喷火娃采纳,获得10
44秒前
47秒前
兔兔兔应助科研通管家采纳,获得10
49秒前
酷波er应助科研通管家采纳,获得10
49秒前
浮游应助科研通管家采纳,获得10
49秒前
桐桐应助科研通管家采纳,获得10
49秒前
49秒前
汉堡包应助科研通管家采纳,获得10
49秒前
cao完成签到 ,获得积分10
51秒前
周浩宇完成签到,获得积分10
52秒前
53秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4539886
求助须知:如何正确求助?哪些是违规求助? 3973990
关于积分的说明 12309917
捐赠科研通 3640925
什么是DOI,文献DOI怎么找? 2004842
邀请新用户注册赠送积分活动 1040262
科研通“疑难数据库(出版商)”最低求助积分说明 929417