亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-stage learning for segmentation of aortic dissections using a prior aortic anatomy simplification

分割 管腔(解剖学) 主动脉 人工智能 主动脉夹层 医学 深度学习 放射科 计算机科学 外科
作者
Duanduan Chen,Xuyang Zhang,Yuqian Mei,Fangzhou Liao,Huanming Xu,Zhenfeng Li,Qianjiang Xiao,Wei Guo,Hongkun Zhang,Tianyi Yan,Jiang Xiong,Yiannis Ventikos
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:69: 101931-101931 被引量:47
标识
DOI:10.1016/j.media.2020.101931
摘要

Aortic dissection (AD) is a life-threatening cardiovascular disease with a high mortality rate. The accurate and generalized 3-D reconstruction of AD from CT-angiography can effectively assist clinical procedures and surgery plans, however, is clinically unavaliable due to the lacking of efficient tools. In this study, we presented a novel multi-stage segmentation framework for type B AD to extract true lumen (TL), false lumen (FL) and all branches (BR) as different classes. Two cascaded neural networks were used to segment the aortic trunk and branches and to separate the dual lumen, respectively. An aortic straightening method was designed based on the prior vascular anatomy of AD, simplifying the curved aortic shape before the second network. The straightening-based method achieved the mean Dice scores of 0.96, 0.95 and 0.89 for TL, FL, and BR on a multi-center dataset involving 120 patients, outperforming the end-to-end multi-class methods and the multi-stage methods without straightening on the dual-lumen segmentation, even using different network architectures. Both the global volumetric features of the aorta and the local characteristics of the primary tear could be better identified and quantified based on the straightening. Comparing to previous deep learning methods dealing with AD segmentations, the proposed framework presented advantages in segmentation accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷傲半邪完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
52秒前
HYQ完成签到 ,获得积分10
58秒前
1分钟前
1分钟前
123完成签到,获得积分20
1分钟前
123发布了新的文献求助10
1分钟前
KINGAZX完成签到 ,获得积分10
1分钟前
STAR完成签到,获得积分10
1分钟前
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
3分钟前
月下荷花完成签到 ,获得积分10
3分钟前
4分钟前
星际舟完成签到,获得积分10
4分钟前
半青一江完成签到 ,获得积分10
4分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得20
5分钟前
5分钟前
5分钟前
缓慢煎蛋发布了新的文献求助100
5分钟前
5分钟前
缓慢煎蛋完成签到,获得积分10
6分钟前
laohei94_6完成签到 ,获得积分10
6分钟前
Criminology34应助科研通管家采纳,获得10
7分钟前
Criminology34应助科研通管家采纳,获得10
7分钟前
深情安青应助科研通管家采纳,获得10
7分钟前
量子星尘发布了新的文献求助20
7分钟前
tingalan完成签到,获得积分0
7分钟前
在水一方应助细心水绿采纳,获得10
8分钟前
9分钟前
细心水绿发布了新的文献求助10
9分钟前
小二郎应助404NotFOUND采纳,获得30
9分钟前
Krim完成签到 ,获得积分0
10分钟前
摘星012完成签到 ,获得积分10
10分钟前
凤里完成签到 ,获得积分10
10分钟前
xwz626完成签到,获得积分10
10分钟前
Criminology34应助科研通管家采纳,获得10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
A Systemic-Functional Study of Language Choice in Singapore 400
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4870368
求助须知:如何正确求助?哪些是违规求助? 4160923
关于积分的说明 12902355
捐赠科研通 3916213
什么是DOI,文献DOI怎么找? 2150720
邀请新用户注册赠送积分活动 1169079
关于科研通互助平台的介绍 1072418