Multi-stage learning for segmentation of aortic dissections using a prior aortic anatomy simplification

分割 管腔(解剖学) 主动脉 人工智能 主动脉夹层 医学 深度学习 放射科 计算机科学 外科
作者
Duanduan Chen,Xuyang Zhang,Yuqian Mei,Fangzhou Liao,Huanming Xu,Zhenfeng Li,Qianjiang Xiao,Wei Guo,Hongkun Zhang,Tianyi Yan,Jiang Xiong,Yiannis Ventikos
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:69: 101931-101931 被引量:42
标识
DOI:10.1016/j.media.2020.101931
摘要

Aortic dissection (AD) is a life-threatening cardiovascular disease with a high mortality rate. The accurate and generalized 3-D reconstruction of AD from CT-angiography can effectively assist clinical procedures and surgery plans, however, is clinically unavaliable due to the lacking of efficient tools. In this study, we presented a novel multi-stage segmentation framework for type B AD to extract true lumen (TL), false lumen (FL) and all branches (BR) as different classes. Two cascaded neural networks were used to segment the aortic trunk and branches and to separate the dual lumen, respectively. An aortic straightening method was designed based on the prior vascular anatomy of AD, simplifying the curved aortic shape before the second network. The straightening-based method achieved the mean Dice scores of 0.96, 0.95 and 0.89 for TL, FL, and BR on a multi-center dataset involving 120 patients, outperforming the end-to-end multi-class methods and the multi-stage methods without straightening on the dual-lumen segmentation, even using different network architectures. Both the global volumetric features of the aorta and the local characteristics of the primary tear could be better identified and quantified based on the straightening. Comparing to previous deep learning methods dealing with AD segmentations, the proposed framework presented advantages in segmentation accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Arabella完成签到,获得积分10
1秒前
HEIKU应助追梦人采纳,获得10
1秒前
1秒前
小T儿发布了新的文献求助10
1秒前
852应助woxiangbiye采纳,获得10
1秒前
飞羽完成签到,获得积分10
2秒前
Owen应助cherry采纳,获得10
2秒前
坚定的老六完成签到,获得积分10
2秒前
协和_子鱼完成签到,获得积分0
2秒前
3秒前
Hyde完成签到,获得积分10
4秒前
小南孩完成签到,获得积分10
4秒前
4秒前
5秒前
研友_VZG7GZ应助keyancui采纳,获得10
5秒前
康康完成签到 ,获得积分10
6秒前
英姑应助毕业就好采纳,获得10
6秒前
虚心的迎荷完成签到,获得积分10
6秒前
脑洞疼应助少侠不是菜鸟采纳,获得10
6秒前
6秒前
祝雲完成签到,获得积分10
6秒前
新的心跳发布了新的文献求助10
6秒前
壹拾柒完成签到,获得积分10
7秒前
7秒前
7秒前
mimi发布了新的文献求助10
7秒前
呆呆完成签到,获得积分10
8秒前
blebui应助姜茶采纳,获得10
8秒前
幼稚园小新完成签到,获得积分10
8秒前
123完成签到,获得积分10
8秒前
9秒前
snowball完成签到,获得积分10
9秒前
10秒前
duoduozs发布了新的文献求助10
10秒前
velpro完成签到,获得积分10
10秒前
qqqq完成签到,获得积分10
10秒前
11秒前
11秒前
溪风完成签到,获得积分10
11秒前
ting发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672