Deep learning‐assisted magnetic resonance imaging prediction of tumor response to chemotherapy in patients with colorectal liver metastases

医学 队列 磁共振成像 病态的 放射科 实体瘤疗效评价标准 化疗 肝切除术 结直肠癌 内科学 外科 肿瘤科 癌症 切除术 进行性疾病
作者
Hai‐Bin Zhu,Da Xu,Meng Ye,Li Sun,Xiaoyan Zhang,Xiao‐Ting Li,Pei Nie,Baocai Xing,Ying‐Shi Sun
出处
期刊:International Journal of Cancer [Wiley]
卷期号:148 (7): 1717-1730 被引量:24
标识
DOI:10.1002/ijc.33427
摘要

Abstract Accurate evaluation of tumor response to preoperative chemotherapy is crucial for assigning appropriate patients with colorectal liver metastases (CRLM) to surgery or conservative therapy. However, there is no well‐recognized method for predicting pathological response before surgery. Our study constructed and validated a deep learning algorithm using prechemotherapy and postchemotherapy magnetic resonance imaging (MRI) to predict pathological response in CRLM. CRLM patients from center one who had ≤5 lesions and were scheduled to receive preoperative chemotherapy followed by liver resection between January 2013 and November 2016, were included prospectively and chronologically divided into a training cohort (80% of patients) and a testing cohort (20% of patients). Patients from center two were included January 2017 and December 2018 as an external validation cohort. MRI‐based models were constructed to discriminate according to pathology tumor regression grade (TRG) between the response (TRG1/2) and nonresponse (TRG3/4/5) groups at the lesion level. From center one, 155 patients (328 lesions) were included; chronologically, 101 (264 lesions) in the training cohort and 54 (64 lesions) in the testing cohort. The model achieved better accuracy (0.875 vs 0.578) and AUC (0.849 vs 0.615) than RECIST for discriminating response; it also distinguished the survival outcomes after hepatectomy better than the RECIST criteria. Evaluations of the external validation cohort (25 patients, 61 lesions) also showed good ability with an AUC of 0.833. In conclusion, the MRI‐based deep learning model provided accurate prediction of pathological tumor response to preoperative chemotherapy in patients with CRLM and may inform individualized treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
akan完成签到,获得积分10
1秒前
2秒前
fancy完成签到,获得积分10
3秒前
个性的长颈鹿完成签到 ,获得积分10
3秒前
酷波er应助YUKI采纳,获得10
4秒前
独特的秋发布了新的文献求助10
6秒前
Smartan完成签到,获得积分10
6秒前
冷傲的道罡完成签到,获得积分10
8秒前
8秒前
大模型应助lio采纳,获得10
11秒前
12秒前
14秒前
ssc完成签到,获得积分10
15秒前
yanmh完成签到,获得积分10
16秒前
17秒前
辛勤的芯完成签到,获得积分20
17秒前
Rgly完成签到 ,获得积分10
17秒前
17秒前
18秒前
19秒前
謓言完成签到,获得积分10
21秒前
ding应助地狱跳跳虎采纳,获得10
21秒前
科研通AI5应助陵铛铛铛采纳,获得10
22秒前
22秒前
魏伯安发布了新的文献求助10
22秒前
24秒前
辛勤的芯发布了新的文献求助10
24秒前
奋斗灵波发布了新的文献求助10
24秒前
小欣完成签到,获得积分10
26秒前
芙卡洛斯发布了新的文献求助10
27秒前
luan完成签到,获得积分10
28秒前
28秒前
科研通AI5应助科研通管家采纳,获得10
30秒前
30秒前
今后应助科研通管家采纳,获得10
30秒前
852应助科研通管家采纳,获得10
30秒前
Orange应助科研通管家采纳,获得10
30秒前
科研通AI5应助科研通管家采纳,获得10
30秒前
科研通AI5应助科研通管家采纳,获得10
30秒前
SCINEXUS应助科研通管家采纳,获得10
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528035
求助须知:如何正确求助?哪些是违规求助? 3108306
关于积分的说明 9288252
捐赠科研通 2805909
什么是DOI,文献DOI怎么找? 1540220
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709851