Core–Shell–Satellite Plasmonic Photocatalyst for Broad-Spectrum Photocatalytic Water Splitting

光催化 等离子体子 材料科学 表面等离子共振 纳米复合材料 可见光谱 光催化分解水 光化学 等离子纳米粒子 光电子学 分解水 纳米技术 纳米颗粒 催化作用 化学 生物化学
作者
He Ren,Jingliang Yang,Weimin Yang,Han-Liang Zhong,Jintong Lin,Petar M. Radjenovic,Lin Sun,Hua Zhang,Juan Xu,Tian Zhang,Jianfeng Li
出处
期刊:ACS materials letters [American Chemical Society]
卷期号:3 (1): 69-76 被引量:49
标识
DOI:10.1021/acsmaterialslett.0c00479
摘要

Photocatalytic water splitting is an ideal way of generating hydrogen, a renewable energy source, from solar energy that would help solve environmental problems. However, current photocatalysts are far from meeting performance requirements for commercial applications. Recently, increasing attention has been paid to surface plasmon resonance (SPR) enhanced photocatalysis using plasmonic nanoparticles (NPs) because of their superior solar energy harvesting capabilities in the visible and near-infrared spectral region. Herein, based on the common CdS photocatalyst, a series of core–shell plasmonic photocatalysts with different core types and shell layer thicknesses were constructed. By combining experimental results and finite element method (FEM), the near-field enhancement mechanism and plasmon-induced resonance energy transfer mechanism was derived. To further improve the energy conversion efficiency, a core–shell–satellite-type plasmonic nanocomposite photocatalyst, Ag@SiO2@CdS-Au, was designed and constructed. Because of hot electron injection and plasmonic coupling effects, the light absorption of the photocatalyst was effectively expanded, which significantly improved the catalytic performance. Compared with traditional CdS, the photocatalytic performance of the plasmonic nanocomposite photocatalyst was improved by more than 200 times. This work deepens the understanding of the mechanisms in SPR enhanced photocatalysis and provides an effective strategy for designing plasmonic photocatalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DONGLINGZHENG发布了新的文献求助10
1秒前
隐形曼青应助清秋采纳,获得10
1秒前
2秒前
从容谷菱发布了新的文献求助10
3秒前
老衲完成签到,获得积分10
3秒前
masonzhang完成签到,获得积分10
3秒前
xiangyiyi完成签到,获得积分20
4秒前
Jack发布了新的文献求助10
4秒前
ihc完成签到,获得积分10
4秒前
Sci完成签到,获得积分10
4秒前
4秒前
masonzhang发布了新的文献求助10
7秒前
felix发布了新的文献求助10
8秒前
8秒前
CodeCraft应助liuchao采纳,获得10
8秒前
9秒前
10秒前
双夏完成签到 ,获得积分10
10秒前
Joseph完成签到,获得积分10
10秒前
BareBear应助发财采纳,获得10
11秒前
坚强的元瑶完成签到,获得积分10
11秒前
南兮发布了新的文献求助10
11秒前
ding应助放放采纳,获得10
12秒前
12秒前
Nancy发布了新的文献求助10
13秒前
星辰大海应助立军采纳,获得10
13秒前
楠易完成签到,获得积分10
13秒前
16秒前
NexusExplorer应助昏睡的糖豆采纳,获得10
17秒前
18秒前
精炼猫薄荷完成签到,获得积分10
19秒前
大曼曼曼曼完成签到,获得积分10
19秒前
21秒前
Jack完成签到,获得积分10
22秒前
Alicia完成签到 ,获得积分10
22秒前
哇咔咔完成签到 ,获得积分10
23秒前
panda发布了新的文献求助10
23秒前
Bran完成签到,获得积分10
24秒前
prosperp应助Omni采纳,获得10
24秒前
寒冷哈密瓜完成签到 ,获得积分10
24秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
RNAの科学 ―時代を拓く生体分子― 金井 昭夫(編) 1000
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Education and Upward Social Mobility in China: Imagining Positive Sociology with Bourdieu 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3353798
求助须知:如何正确求助?哪些是违规求助? 2978264
关于积分的说明 8685006
捐赠科研通 2659804
什么是DOI,文献DOI怎么找? 1456351
科研通“疑难数据库(出版商)”最低求助积分说明 674342
邀请新用户注册赠送积分活动 665110