Core–Shell–Satellite Plasmonic Photocatalyst for Broad-Spectrum Photocatalytic Water Splitting

光催化 等离子体子 材料科学 表面等离子共振 纳米复合材料 可见光谱 光催化分解水 光化学 等离子纳米粒子 光电子学 分解水 纳米技术 纳米颗粒 催化作用 化学 生物化学
作者
He Ren,Jingliang Yang,Weimin Yang,Han-Liang Zhong,Jintong Lin,Petar M. Radjenovic,Lin Sun,Hua Zhang,Juan Xu,Tian Zhang,Jianfeng Li
出处
期刊:ACS materials letters [American Chemical Society]
卷期号:3 (1): 69-76 被引量:49
标识
DOI:10.1021/acsmaterialslett.0c00479
摘要

Photocatalytic water splitting is an ideal way of generating hydrogen, a renewable energy source, from solar energy that would help solve environmental problems. However, current photocatalysts are far from meeting performance requirements for commercial applications. Recently, increasing attention has been paid to surface plasmon resonance (SPR) enhanced photocatalysis using plasmonic nanoparticles (NPs) because of their superior solar energy harvesting capabilities in the visible and near-infrared spectral region. Herein, based on the common CdS photocatalyst, a series of core–shell plasmonic photocatalysts with different core types and shell layer thicknesses were constructed. By combining experimental results and finite element method (FEM), the near-field enhancement mechanism and plasmon-induced resonance energy transfer mechanism was derived. To further improve the energy conversion efficiency, a core–shell–satellite-type plasmonic nanocomposite photocatalyst, Ag@SiO2@CdS-Au, was designed and constructed. Because of hot electron injection and plasmonic coupling effects, the light absorption of the photocatalyst was effectively expanded, which significantly improved the catalytic performance. Compared with traditional CdS, the photocatalytic performance of the plasmonic nanocomposite photocatalyst was improved by more than 200 times. This work deepens the understanding of the mechanisms in SPR enhanced photocatalysis and provides an effective strategy for designing plasmonic photocatalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小孟吖完成签到 ,获得积分10
1秒前
称心不尤完成签到 ,获得积分10
1秒前
huyuan完成签到,获得积分10
1秒前
勤恳怀梦完成签到,获得积分10
1秒前
CrisLEE完成签到,获得积分10
1秒前
LEE123完成签到,获得积分10
2秒前
cdragon完成签到,获得积分10
2秒前
QQ发布了新的文献求助10
3秒前
DUN发布了新的文献求助10
3秒前
伍六七完成签到,获得积分10
4秒前
Hello应助无医采纳,获得10
4秒前
舒适的雁风完成签到,获得积分10
6秒前
性静H情逸完成签到,获得积分10
7秒前
球宝完成签到,获得积分10
7秒前
Ava应助XieQinxie采纳,获得10
7秒前
Cyrus完成签到,获得积分10
8秒前
就滴滴勾儿完成签到,获得积分10
8秒前
章鱼小丸子完成签到 ,获得积分10
8秒前
8秒前
加油少年完成签到,获得积分10
9秒前
小蘑菇应助zhangfan采纳,获得10
9秒前
Sean完成签到,获得积分10
9秒前
天天快乐应助hetao286采纳,获得10
10秒前
十四完成签到 ,获得积分10
10秒前
蒙蒙完成签到 ,获得积分10
10秒前
橙子完成签到 ,获得积分10
11秒前
jkaaa完成签到,获得积分10
11秒前
shi0331完成签到,获得积分10
12秒前
12秒前
阿强哥20241101完成签到,获得积分10
13秒前
迷人芫完成签到,获得积分10
13秒前
13秒前
机会完成签到,获得积分10
13秒前
阳光绿柏完成签到,获得积分10
13秒前
DUN完成签到,获得积分10
14秒前
14秒前
15秒前
QQ完成签到,获得积分10
15秒前
打卡下班完成签到,获得积分0
15秒前
MiYou完成签到,获得积分10
16秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008933
求助须知:如何正确求助?哪些是违规求助? 3548669
关于积分的说明 11299538
捐赠科研通 3283228
什么是DOI,文献DOI怎么找? 1810311
邀请新用户注册赠送积分活动 886034
科研通“疑难数据库(出版商)”最低求助积分说明 811259