Core–Shell–Satellite Plasmonic Photocatalyst for Broad-Spectrum Photocatalytic Water Splitting

光催化 等离子体子 材料科学 表面等离子共振 纳米复合材料 可见光谱 光催化分解水 光化学 等离子纳米粒子 光电子学 分解水 纳米技术 纳米颗粒 催化作用 化学 生物化学
作者
He Ren,Jingliang Yang,Weimin Yang,Han‐Liang Zhong,Jia‐Sheng Lin,Petar M. Radjenovic,Lan Sun,Hua Zhang,Juan Xu,Zhong‐Qun Tian,Jianfeng Li
出处
期刊:ACS materials letters [American Chemical Society]
卷期号:3 (1): 69-76 被引量:85
标识
DOI:10.1021/acsmaterialslett.0c00479
摘要

Photocatalytic water splitting is an ideal way of generating hydrogen, a renewable energy source, from solar energy that would help solve environmental problems. However, current photocatalysts are far from meeting performance requirements for commercial applications. Recently, increasing attention has been paid to surface plasmon resonance (SPR) enhanced photocatalysis using plasmonic nanoparticles (NPs) because of their superior solar energy harvesting capabilities in the visible and near-infrared spectral region. Herein, based on the common CdS photocatalyst, a series of core–shell plasmonic photocatalysts with different core types and shell layer thicknesses were constructed. By combining experimental results and finite element method (FEM), the near-field enhancement mechanism and plasmon-induced resonance energy transfer mechanism was derived. To further improve the energy conversion efficiency, a core–shell–satellite-type plasmonic nanocomposite photocatalyst, Ag@SiO2@CdS-Au, was designed and constructed. Because of hot electron injection and plasmonic coupling effects, the light absorption of the photocatalyst was effectively expanded, which significantly improved the catalytic performance. Compared with traditional CdS, the photocatalytic performance of the plasmonic nanocomposite photocatalyst was improved by more than 200 times. This work deepens the understanding of the mechanisms in SPR enhanced photocatalysis and provides an effective strategy for designing plasmonic photocatalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伞下铭发布了新的文献求助10
1秒前
1秒前
Voyage发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
科研小白完成签到,获得积分10
2秒前
YIZHIZOU发布了新的文献求助10
2秒前
2秒前
3秒前
栗子完成签到,获得积分20
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
faker完成签到,获得积分10
4秒前
yatou完成签到,获得积分10
5秒前
ww发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
syt完成签到 ,获得积分10
6秒前
Criminology34应助李丙首采纳,获得10
6秒前
6秒前
force完成签到 ,获得积分10
7秒前
7秒前
7秒前
yatou发布了新的文献求助10
8秒前
清浅发布了新的文献求助10
8秒前
8秒前
8秒前
子车茗应助LeichterL采纳,获得20
8秒前
小蘑菇应助远方采纳,获得10
9秒前
9秒前
YIZHIZOU完成签到,获得积分20
9秒前
熬夜波比应助虚心的语柔采纳,获得10
9秒前
森林完成签到,获得积分10
9秒前
Astronaut完成签到,获得积分10
10秒前
10秒前
10秒前
小二郎应助自由的尔蓉采纳,获得10
10秒前
科研小白发布了新的文献求助30
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667160
求助须知:如何正确求助?哪些是违规求助? 4884250
关于积分的说明 15118778
捐赠科研通 4826049
什么是DOI,文献DOI怎么找? 2583692
邀请新用户注册赠送积分活动 1537843
关于科研通互助平台的介绍 1496006