亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Core–Shell–Satellite Plasmonic Photocatalyst for Broad-Spectrum Photocatalytic Water Splitting

光催化 等离子体子 材料科学 表面等离子共振 纳米复合材料 可见光谱 光催化分解水 光化学 等离子纳米粒子 光电子学 分解水 纳米技术 纳米颗粒 催化作用 化学 生物化学
作者
He Ren,Jingliang Yang,Weimin Yang,Han‐Liang Zhong,Jia‐Sheng Lin,Petar M. Radjenovic,Lan Sun,Hua Zhang,Juan Xu,Zhong‐Qun Tian,Jianfeng Li
出处
期刊:ACS materials letters [American Chemical Society]
卷期号:3 (1): 69-76 被引量:85
标识
DOI:10.1021/acsmaterialslett.0c00479
摘要

Photocatalytic water splitting is an ideal way of generating hydrogen, a renewable energy source, from solar energy that would help solve environmental problems. However, current photocatalysts are far from meeting performance requirements for commercial applications. Recently, increasing attention has been paid to surface plasmon resonance (SPR) enhanced photocatalysis using plasmonic nanoparticles (NPs) because of their superior solar energy harvesting capabilities in the visible and near-infrared spectral region. Herein, based on the common CdS photocatalyst, a series of core–shell plasmonic photocatalysts with different core types and shell layer thicknesses were constructed. By combining experimental results and finite element method (FEM), the near-field enhancement mechanism and plasmon-induced resonance energy transfer mechanism was derived. To further improve the energy conversion efficiency, a core–shell–satellite-type plasmonic nanocomposite photocatalyst, Ag@SiO2@CdS-Au, was designed and constructed. Because of hot electron injection and plasmonic coupling effects, the light absorption of the photocatalyst was effectively expanded, which significantly improved the catalytic performance. Compared with traditional CdS, the photocatalytic performance of the plasmonic nanocomposite photocatalyst was improved by more than 200 times. This work deepens the understanding of the mechanisms in SPR enhanced photocatalysis and provides an effective strategy for designing plasmonic photocatalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
z123完成签到,获得积分10
2秒前
AWY发布了新的文献求助10
2秒前
Tanya47应助Echopotter采纳,获得10
3秒前
酷波er应助七宝大当家采纳,获得10
9秒前
mmyhn发布了新的文献求助10
10秒前
11秒前
13秒前
英俊的铭应助荔荔采纳,获得50
13秒前
fangdonghai发布了新的文献求助10
18秒前
Tanya47应助科研通管家采纳,获得10
21秒前
Tanya47应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
Tanya47应助科研通管家采纳,获得10
21秒前
若宫伊芙应助科研通管家采纳,获得10
21秒前
Akim应助ceeray23采纳,获得20
24秒前
熬夜波比应助七宝大当家采纳,获得10
25秒前
lune发布了新的文献求助10
30秒前
桐桐应助bigalexwei采纳,获得30
30秒前
31秒前
王振兴完成签到 ,获得积分10
31秒前
啦啦啦完成签到 ,获得积分10
37秒前
38秒前
隐形便当完成签到 ,获得积分10
41秒前
44秒前
46秒前
bigalexwei发布了新的文献求助30
49秒前
aidiresi发布了新的文献求助10
50秒前
57秒前
1分钟前
1分钟前
李爱国应助fangdonghai采纳,获得10
1分钟前
ceeray23发布了新的文献求助20
1分钟前
1分钟前
小新小新完成签到 ,获得积分10
1分钟前
1分钟前
荔荔完成签到,获得积分20
1分钟前
慕青应助沧浪采纳,获得10
1分钟前
荔荔发布了新的文献求助50
1分钟前
蓝天应助aidiresi采纳,获得10
1分钟前
心灵美的梦松完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664034
求助须知:如何正确求助?哪些是违规求助? 4856893
关于积分的说明 15107044
捐赠科研通 4822496
什么是DOI,文献DOI怎么找? 2581475
邀请新用户注册赠送积分活动 1535694
关于科研通互助平台的介绍 1493921