A clinical‐radiomic model for improved prognostication of surgical candidates with colorectal liver metastases

医学 比例危险模型 磁共振成像 危险系数 结直肠癌 放射科 多元分析 回顾性队列研究 病态的 内科学 肿瘤科 癌症 置信区间
作者
Joshua Shur,Matthew Orton,Ashton A. Connor,Sandra E. Fischer,Carol‐Anne Moulton,Steven Gallinger,Dow‐Mu Koh,Kartik Jhaveri
出处
期刊:Journal of Surgical Oncology [Wiley]
卷期号:121 (2): 357-364 被引量:31
标识
DOI:10.1002/jso.25783
摘要

Abstract Background and Objectives Colorectal cancer with liver metastases is potentially curable with surgical resection however clinical prognostic factors can insufficiently stratify patients. This study aims to assess whether radiomic features are prognostic and can inform clinical decision making. Methods This single‐site retrospective study included 102 patients who underwent colorectal liver metastases resection with preoperative computed tomography (CT), magnetic resonance imaging (MRI) with gadoxetic acid (EOB) and clinical covariates. A lasso‐regularized multivariate Cox proportional hazards model was applied to 114 features (10 clinical, 104 radiomic) to determine association with disease‐free survival (DFS). A prognostic index was derived using the significant Cox regression coefficients and their corresponding input features and a threshold was determined to classify patients into high‐ and low‐risk groups, and DFS compared using log‐rank tests. Results Four covariates were significantly associated with DFS; bilobar disease (hazard ratio [HR]= 1.56; P = .0043), complete pathological response (HR= 0.67; P = .025), minimum pixel value (HR= 1.66; P = .00016), and small area emphasis (HR= 0.62; P = .0013) from the EOB‐MRI data. Radiomic CT features were not prognostic. The prognostic index strongly stratified high‐ and low‐risk prognostic groups (HR = 0.31; P = .00068). Conclusion Radiomic MRI features provided meaningful prognostic information above clinical covariates alone. This merits further validation for potential clinical implementation to inform management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pi发布了新的文献求助10
刚刚
刚刚
小蘑菇应助科研菜鸟采纳,获得10
1秒前
Owen应助晚风采纳,获得10
1秒前
小二郎应助Jiangnj采纳,获得10
1秒前
微信研友完成签到,获得积分10
1秒前
科研通AI5应助陈杰采纳,获得10
1秒前
2秒前
Jasper应助含糊采纳,获得10
2秒前
dfggg发布了新的文献求助10
2秒前
跑在颖发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
yatou5651发布了新的文献求助10
2秒前
3秒前
乐乐应助koi采纳,获得10
3秒前
asdfqwer发布了新的文献求助10
3秒前
3秒前
chemhub完成签到,获得积分10
3秒前
杜杜完成签到,获得积分10
4秒前
周小慧发布了新的文献求助10
4秒前
4秒前
自由寻菱完成签到 ,获得积分10
4秒前
5秒前
Akim应助丘奇采纳,获得10
6秒前
美丽小蕾发布了新的文献求助10
6秒前
dingdong发布了新的文献求助10
6秒前
ZX完成签到 ,获得积分10
6秒前
九川发布了新的文献求助10
6秒前
7秒前
7秒前
SandyH关注了科研通微信公众号
8秒前
8秒前
公西元柏发布了新的文献求助10
8秒前
碱性沉默发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
SciGPT应助猪猪采纳,获得10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762