浮游植物
霍普夫分叉
分叉
营养物
理论(学习稳定性)
数学
应用数学
马鞍
生物系统
环境科学
控制理论(社会学)
生态学
生物
物理
控制(管理)
计算机科学
数学优化
量子力学
机器学习
人工智能
非线性系统
出处
期刊:Discrete and Continuous Dynamical Systems - Series S
[American Institute of Mathematical Sciences]
日期:2019-11-29
卷期号:13 (11): 3073-3081
被引量:4
标识
DOI:10.3934/dcdss.2020135
摘要
In this paper, we analyze a nutrient-phytoplankton model with toxic effects governed by a Holling-type Ⅲ functional. We show the model can undergo two saddle-node bifurcations and a Hopf bifurcation. This results in very interesting dynamics: the model can have at most three positive equilibria and can exhibit relaxation oscillations. Our results provide some insights on understanding the occurrence and control of phytoplankton blooms.
科研通智能强力驱动
Strongly Powered by AbleSci AI