已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Modeling and optimization of cooking process parameters to improve the nutritional profile of fried fish by robust hybrid artificial intelligence approach

卡特拉魮 人工神经网络 食品科学 鱼油 数学 营养物 食用油 生物技术 计算机科学 化学 人工智能 生物 渔业 生态学 野鲮属
作者
Tithli Sadhu,Indrani Banerjee,Sandip Kumar Lahiri,Jitamanyu Chakrabarty
出处
期刊:Journal of Food Process Engineering [Wiley]
卷期号:43 (9) 被引量:16
标识
DOI:10.1111/jfpe.13478
摘要

Abstract Fish, being a good source of nutrients, is often cooked by different methods before consumption, which affect the beneficial quality detrimentally. In this study, Catla catla , and mustard oil are selected as representative of fish and cooking oil for frying, respectively, because of their agricultural importance and worldwide demand. Extensive experiments are performed varying the effective processing variables of conventional frying viz., temperature (140 °C‐240 °C), time (5 min–20 min) and oil amount (25 ml/kg of fish‐100 ml/kg of fish) to correlate the drastic reduction of the nutritional quality indices, that is, ω‐3/ω‐6 and cis/trans‐fatty acids (FAs) profiles of fish after frying. To establish a nonlinear correlation between these inputs and outputs, an exhaustive search of all available artificial neural network (ANN) algorithms and activation functions is executed for the development of a model. The hybrid robust process approach integrating ANN with differential evolution (DE) and simulated annealing (SA) are employed to optimize the cooking parameters for regaining nutritional impact. After frying ω‐3/ω‐6 and cis/trans‐FAs ratio deteriorated by 76.65% and 92.68%, respectively, than the fresh samples. The ANN‐DE and ANN‐SA formalism efficiently enhanced these nutritional parameters up to 33.18% and 79%, respectively. Practical applications The present study applied artificial neural network (ANN) as an advanced alternative modeling tool to propose a generalized nonlinear correlation between temperature, time, oil amount, and nutritional values, that is, ω‐3/ω‐6 and cis/trans‐fatty acids (FAs) profiles of fried fish. Frying time provided a strong impact on food nutrition compared to other two input variables. Frying process detrimentally affected both the nutritional indices, that is, ω‐3/ω‐6 and cis/trans‐FAs profiles. The meta‐heuristic, stochastic optimization algorithms, namely differential evolution and simulated annealing along with ANN‐based processed model were implemented successfully to tune the cooking parameters, so that food quality indices of fish improved again to maximum value. The artificial intelligence modeling, along with optimizing methodology based parameters tuning approach described here is generic and can be advantageously extended to other experimentation of food process engineering. Besides, the finding of this study will benefit common people also.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuan完成签到 ,获得积分10
刚刚
orixero应助偶的否采纳,获得30
2秒前
皮皮完成签到,获得积分10
3秒前
September发布了新的文献求助10
3秒前
4秒前
8秒前
8秒前
火星上的如松完成签到,获得积分10
9秒前
ANG完成签到 ,获得积分10
9秒前
10秒前
yuyu发布了新的文献求助10
10秒前
Mr_Qiu发布了新的文献求助10
11秒前
11秒前
LH发布了新的文献求助10
14秒前
helloragdoll发布了新的文献求助10
15秒前
zg完成签到,获得积分10
15秒前
打工人发布了新的文献求助10
15秒前
仙林AK47发布了新的文献求助20
15秒前
15秒前
善学以致用应助CCC采纳,获得10
17秒前
Hyy完成签到 ,获得积分10
17秒前
18秒前
默默的彩虹完成签到 ,获得积分10
18秒前
吕吕完成签到,获得积分10
19秒前
曼波发布了新的文献求助10
19秒前
lin完成签到 ,获得积分10
22秒前
丘比特应助CCCheny采纳,获得10
22秒前
orixero应助2526采纳,获得10
23秒前
科研通AI6.1应助歪梨小羊采纳,获得30
23秒前
23秒前
23秒前
27秒前
仙林AK47发布了新的文献求助10
28秒前
风清扬发布了新的文献求助10
28秒前
30秒前
香蕉觅云应助qcj采纳,获得10
30秒前
shane发布了新的文献求助10
31秒前
眼睛大的友易完成签到,获得积分10
31秒前
科研通AI2S应助大头麦穗鱼采纳,获得10
32秒前
Lewis发布了新的文献求助10
33秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5754009
求助须知:如何正确求助?哪些是违规求助? 5483861
关于积分的说明 15379371
捐赠科研通 4892757
什么是DOI,文献DOI怎么找? 2631473
邀请新用户注册赠送积分活动 1579513
关于科研通互助平台的介绍 1535218