Modeling and optimization of cooking process parameters to improve the nutritional profile of fried fish by robust hybrid artificial intelligence approach

卡特拉魮 人工神经网络 食品科学 鱼油 数学 营养物 食用油 生物技术 计算机科学 化学 人工智能 生物 渔业 生态学 野鲮属
作者
Tithli Sadhu,Indrani Banerjee,Sandip Kumar Lahiri,Jitamanyu Chakrabarty
出处
期刊:Journal of Food Process Engineering [Wiley]
卷期号:43 (9) 被引量:16
标识
DOI:10.1111/jfpe.13478
摘要

Abstract Fish, being a good source of nutrients, is often cooked by different methods before consumption, which affect the beneficial quality detrimentally. In this study, Catla catla , and mustard oil are selected as representative of fish and cooking oil for frying, respectively, because of their agricultural importance and worldwide demand. Extensive experiments are performed varying the effective processing variables of conventional frying viz., temperature (140 °C‐240 °C), time (5 min–20 min) and oil amount (25 ml/kg of fish‐100 ml/kg of fish) to correlate the drastic reduction of the nutritional quality indices, that is, ω‐3/ω‐6 and cis/trans‐fatty acids (FAs) profiles of fish after frying. To establish a nonlinear correlation between these inputs and outputs, an exhaustive search of all available artificial neural network (ANN) algorithms and activation functions is executed for the development of a model. The hybrid robust process approach integrating ANN with differential evolution (DE) and simulated annealing (SA) are employed to optimize the cooking parameters for regaining nutritional impact. After frying ω‐3/ω‐6 and cis/trans‐FAs ratio deteriorated by 76.65% and 92.68%, respectively, than the fresh samples. The ANN‐DE and ANN‐SA formalism efficiently enhanced these nutritional parameters up to 33.18% and 79%, respectively. Practical applications The present study applied artificial neural network (ANN) as an advanced alternative modeling tool to propose a generalized nonlinear correlation between temperature, time, oil amount, and nutritional values, that is, ω‐3/ω‐6 and cis/trans‐fatty acids (FAs) profiles of fried fish. Frying time provided a strong impact on food nutrition compared to other two input variables. Frying process detrimentally affected both the nutritional indices, that is, ω‐3/ω‐6 and cis/trans‐FAs profiles. The meta‐heuristic, stochastic optimization algorithms, namely differential evolution and simulated annealing along with ANN‐based processed model were implemented successfully to tune the cooking parameters, so that food quality indices of fish improved again to maximum value. The artificial intelligence modeling, along with optimizing methodology based parameters tuning approach described here is generic and can be advantageously extended to other experimentation of food process engineering. Besides, the finding of this study will benefit common people also.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无情的匪发布了新的文献求助10
1秒前
3秒前
大个应助莲莲采纳,获得10
3秒前
殷蝶发布了新的文献求助20
4秒前
上官若男应助缥缈的绿兰采纳,获得10
5秒前
完美世界应助负责的方盒采纳,获得10
5秒前
Lucas应助wchwei123采纳,获得10
6秒前
heat完成签到,获得积分10
7秒前
嘟嘟完成签到 ,获得积分10
8秒前
8秒前
9秒前
9秒前
正直完成签到,获得积分10
9秒前
汪汪完成签到,获得积分10
9秒前
10秒前
10秒前
风清扬发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
capitalist完成签到,获得积分10
12秒前
可靠板栗发布了新的文献求助10
13秒前
LiYaru发布了新的文献求助10
14秒前
默默乘云发布了新的文献求助10
14秒前
jin驳回了华仔应助
15秒前
加油加油发布了新的文献求助10
16秒前
17秒前
capitalist发布了新的文献求助10
17秒前
18秒前
烟花应助陈子皮boy采纳,获得10
18秒前
朴实伯云完成签到,获得积分10
18秒前
20秒前
量子星尘发布了新的文献求助10
20秒前
鲤鱼大神发布了新的文献求助10
21秒前
21秒前
舒适的书竹应助xiao_chi采纳,获得30
21秒前
22秒前
22秒前
22秒前
23秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979916
求助须知:如何正确求助?哪些是违规求助? 3524003
关于积分的说明 11219349
捐赠科研通 3261424
什么是DOI,文献DOI怎么找? 1800654
邀请新用户注册赠送积分活动 879239
科研通“疑难数据库(出版商)”最低求助积分说明 807214