Modeling and optimization of cooking process parameters to improve the nutritional profile of fried fish by robust hybrid artificial intelligence approach

卡特拉魮 人工神经网络 食品科学 鱼油 数学 营养物 食用油 生物技术 计算机科学 化学 人工智能 生物 渔业 生态学 野鲮属
作者
Tithli Sadhu,Indrani Banerjee,Sandip Kumar Lahiri,Jitamanyu Chakrabarty
出处
期刊:Journal of Food Process Engineering [Wiley]
卷期号:43 (9) 被引量:16
标识
DOI:10.1111/jfpe.13478
摘要

Abstract Fish, being a good source of nutrients, is often cooked by different methods before consumption, which affect the beneficial quality detrimentally. In this study, Catla catla , and mustard oil are selected as representative of fish and cooking oil for frying, respectively, because of their agricultural importance and worldwide demand. Extensive experiments are performed varying the effective processing variables of conventional frying viz., temperature (140 °C‐240 °C), time (5 min–20 min) and oil amount (25 ml/kg of fish‐100 ml/kg of fish) to correlate the drastic reduction of the nutritional quality indices, that is, ω‐3/ω‐6 and cis/trans‐fatty acids (FAs) profiles of fish after frying. To establish a nonlinear correlation between these inputs and outputs, an exhaustive search of all available artificial neural network (ANN) algorithms and activation functions is executed for the development of a model. The hybrid robust process approach integrating ANN with differential evolution (DE) and simulated annealing (SA) are employed to optimize the cooking parameters for regaining nutritional impact. After frying ω‐3/ω‐6 and cis/trans‐FAs ratio deteriorated by 76.65% and 92.68%, respectively, than the fresh samples. The ANN‐DE and ANN‐SA formalism efficiently enhanced these nutritional parameters up to 33.18% and 79%, respectively. Practical applications The present study applied artificial neural network (ANN) as an advanced alternative modeling tool to propose a generalized nonlinear correlation between temperature, time, oil amount, and nutritional values, that is, ω‐3/ω‐6 and cis/trans‐fatty acids (FAs) profiles of fried fish. Frying time provided a strong impact on food nutrition compared to other two input variables. Frying process detrimentally affected both the nutritional indices, that is, ω‐3/ω‐6 and cis/trans‐FAs profiles. The meta‐heuristic, stochastic optimization algorithms, namely differential evolution and simulated annealing along with ANN‐based processed model were implemented successfully to tune the cooking parameters, so that food quality indices of fish improved again to maximum value. The artificial intelligence modeling, along with optimizing methodology based parameters tuning approach described here is generic and can be advantageously extended to other experimentation of food process engineering. Besides, the finding of this study will benefit common people also.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
weiyu完成签到,获得积分10
2秒前
科研通AI2S应助一只喵采纳,获得10
2秒前
2秒前
星辰大海应助soong采纳,获得10
2秒前
Xiaoixa完成签到,获得积分10
3秒前
菜菜完成签到,获得积分10
4秒前
文静老四完成签到,获得积分10
5秒前
6秒前
等待诗柳完成签到,获得积分10
6秒前
NexusExplorer应助pear采纳,获得10
6秒前
weiyu发布了新的文献求助30
7秒前
8秒前
afan发布了新的文献求助10
9秒前
12秒前
12秒前
辣辣发布了新的文献求助10
13秒前
李爱国应助七七采纳,获得30
13秒前
14秒前
杨杨杨发布了新的文献求助10
15秒前
afan完成签到,获得积分10
16秒前
稳重向南发布了新的文献求助10
17秒前
皓月千里给皓月千里的求助进行了留言
17秒前
葡萄成熟时完成签到 ,获得积分10
17秒前
17秒前
景飞丹发布了新的文献求助10
18秒前
Jasper应助科研通管家采纳,获得30
18秒前
18秒前
爆米花应助科研通管家采纳,获得10
19秒前
隐形曼青应助科研通管家采纳,获得10
19秒前
情怀应助科研通管家采纳,获得10
19秒前
汉堡包应助科研通管家采纳,获得30
19秒前
wanci应助科研通管家采纳,获得10
19秒前
sdhgd应助科研通管家采纳,获得10
19秒前
彭于晏应助科研通管家采纳,获得10
19秒前
子车茗应助科研通管家采纳,获得10
19秒前
隐形曼青应助科研通管家采纳,获得10
19秒前
杨e发布了新的文献求助10
19秒前
爆米花应助科研通管家采纳,获得10
19秒前
星辰大海应助科研通管家采纳,获得30
19秒前
共享精神应助科研通管家采纳,获得10
19秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157630
求助须知:如何正确求助?哪些是违规求助? 2808948
关于积分的说明 7879413
捐赠科研通 2467414
什么是DOI,文献DOI怎么找? 1313449
科研通“疑难数据库(出版商)”最低求助积分说明 630398
版权声明 601919