A digital twin to train deep reinforcement learning agent for smart manufacturing plants: Environment, interfaces and intelligence

强化学习 自动化 数字化制造 过程(计算) 计算机科学 工程类 制造执行系统 计算机集成制造 制造工程 人工智能 工业工程 机械工程 操作系统
作者
Kaishu Xia,Christopher Sacco,Max Kirkpatrick,Clint Saidy,Lam M. Nguyen,Anil Kircaliali,Ramy Harik
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:58: 210-230 被引量:295
标识
DOI:10.1016/j.jmsy.2020.06.012
摘要

Filling the gaps between virtual and physical systems will open new doors in Smart Manufacturing. This work proposes a data-driven approach to utilize digital transformation methods to automate smart manufacturing systems. This is fundamentally enabled by using a digital twin to represent manufacturing cells, simulate system behaviors, predict process faults, and adaptively control manipulated variables. First, the manufacturing cell is accommodated to environments such as computer-aided applications, industrial Product Lifecycle Management solutions, and control platforms for automation systems. Second, a network of interfaces between the environments is designed and implemented to enable communication between the digital world and physical manufacturing plant, so that near-synchronous controls can be achieved. Third, capabilities of some members in the family of Deep Reinforcement Learning (DRL) are discussed with manufacturing features within the context of Smart Manufacturing. Trained results for Deep Q Learning algorithms are finally presented in this work as a case study to incorporate DRL-based artificial intelligence to the industrial control process. As a result, developed control methodology, named Digital Engine, is expected to acquire process knowledges, schedule manufacturing tasks, identify optimal actions, and demonstrate control robustness. The authors show that integrating a smart agent into the industrial platforms further expands the usage of the system-level digital twin, where intelligent control algorithms are trained and verified upfront before deployed to the physical world for implementation. Moreover, DRL approach to automated manufacturing control problems under facile optimization environments will be a novel combination between data science and manufacturing industries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
加贝火火完成签到 ,获得积分10
刚刚
NGU发布了新的文献求助10
刚刚
太叔开山发布了新的文献求助10
1秒前
星辰大海应助健壮慕梅采纳,获得10
1秒前
菠萝冰棒完成签到,获得积分10
1秒前
psybrain9527完成签到,获得积分10
1秒前
Li发布了新的文献求助10
3秒前
guojian发布了新的文献求助10
3秒前
Akim应助李瑜婷采纳,获得10
3秒前
4秒前
小明应助坚定的怜晴采纳,获得40
5秒前
5秒前
7秒前
科研通AI6应助北北北采纳,获得10
8秒前
小二郎应助着急的鹏涛采纳,获得10
9秒前
9秒前
科研通AI6应助0713采纳,获得10
9秒前
夕阳的刻痕完成签到,获得积分10
10秒前
zys0421发布了新的文献求助10
10秒前
星月完成签到,获得积分10
10秒前
LiuJ发布了新的文献求助20
10秒前
科研通AI6应助MM采纳,获得10
10秒前
科研通AI6应助MM采纳,获得10
10秒前
叕叕完成签到,获得积分10
10秒前
浮游应助riyamao采纳,获得10
11秒前
SHIRO发布了新的文献求助10
11秒前
11秒前
小蘑菇应助害羞采萱采纳,获得10
11秒前
彦嘉发布了新的文献求助10
11秒前
XM完成签到,获得积分10
12秒前
12秒前
科研通AI6应助Li采纳,获得10
12秒前
赘婿应助Li采纳,获得10
12秒前
mushengng发布了新的文献求助10
12秒前
Oreki完成签到,获得积分10
13秒前
JV完成签到 ,获得积分10
14秒前
14秒前
沢雨完成签到,获得积分20
15秒前
廾匸发布了新的文献求助20
15秒前
0713发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5460985
求助须知:如何正确求助?哪些是违规求助? 4566080
关于积分的说明 14303083
捐赠科研通 4491670
什么是DOI,文献DOI怎么找? 2460439
邀请新用户注册赠送积分活动 1449757
关于科研通互助平台的介绍 1425537