亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A digital twin to train deep reinforcement learning agent for smart manufacturing plants: Environment, interfaces and intelligence

强化学习 自动化 数字化制造 过程(计算) 计算机科学 工程类 制造执行系统 计算机集成制造 制造工程 人工智能 工业工程 机械工程 操作系统
作者
Kaishu Xia,Christopher Sacco,Max Kirkpatrick,Clint Saidy,Lam M. Nguyen,Anil Kircaliali,Ramy Harik
出处
期刊:Journal of Manufacturing Systems [Elsevier BV]
卷期号:58: 210-230 被引量:295
标识
DOI:10.1016/j.jmsy.2020.06.012
摘要

Filling the gaps between virtual and physical systems will open new doors in Smart Manufacturing. This work proposes a data-driven approach to utilize digital transformation methods to automate smart manufacturing systems. This is fundamentally enabled by using a digital twin to represent manufacturing cells, simulate system behaviors, predict process faults, and adaptively control manipulated variables. First, the manufacturing cell is accommodated to environments such as computer-aided applications, industrial Product Lifecycle Management solutions, and control platforms for automation systems. Second, a network of interfaces between the environments is designed and implemented to enable communication between the digital world and physical manufacturing plant, so that near-synchronous controls can be achieved. Third, capabilities of some members in the family of Deep Reinforcement Learning (DRL) are discussed with manufacturing features within the context of Smart Manufacturing. Trained results for Deep Q Learning algorithms are finally presented in this work as a case study to incorporate DRL-based artificial intelligence to the industrial control process. As a result, developed control methodology, named Digital Engine, is expected to acquire process knowledges, schedule manufacturing tasks, identify optimal actions, and demonstrate control robustness. The authors show that integrating a smart agent into the industrial platforms further expands the usage of the system-level digital twin, where intelligent control algorithms are trained and verified upfront before deployed to the physical world for implementation. Moreover, DRL approach to automated manufacturing control problems under facile optimization environments will be a novel combination between data science and manufacturing industries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大树完成签到 ,获得积分10
34秒前
35秒前
56秒前
欢呼爆米花完成签到 ,获得积分10
1分钟前
StonesKing完成签到,获得积分10
1分钟前
1分钟前
1分钟前
xiaobai完成签到,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
4分钟前
5分钟前
伏城完成签到 ,获得积分10
5分钟前
5分钟前
dd发布了新的文献求助10
5分钟前
完美世界应助1234采纳,获得10
5分钟前
英俊的铭应助欧贝斯特采纳,获得10
6分钟前
1234完成签到,获得积分10
6分钟前
愉快的犀牛完成签到 ,获得积分10
6分钟前
dd完成签到,获得积分20
6分钟前
6分钟前
6分钟前
手打鱼丸完成签到 ,获得积分10
7分钟前
7分钟前
7分钟前
今后应助科研通管家采纳,获得10
7分钟前
学术乞丐发布了新的文献求助10
7分钟前
卡卡完成签到 ,获得积分10
8分钟前
8分钟前
欧贝斯特完成签到,获得积分10
8分钟前
kongkai驳回了dodo应助
8分钟前
8分钟前
欧贝斯特发布了新的文献求助10
8分钟前
8分钟前
9分钟前
萱萱发布了新的文献求助100
9分钟前
9分钟前
打打应助andrele采纳,获得10
9分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3963210
求助须知:如何正确求助?哪些是违规求助? 3509100
关于积分的说明 11145064
捐赠科研通 3242197
什么是DOI,文献DOI怎么找? 1791800
邀请新用户注册赠送积分活动 873168
科研通“疑难数据库(出版商)”最低求助积分说明 803643