重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

A digital twin to train deep reinforcement learning agent for smart manufacturing plants: Environment, interfaces and intelligence

强化学习 自动化 数字化制造 过程(计算) 计算机科学 工程类 制造执行系统 计算机集成制造 制造工程 人工智能 工业工程 机械工程 操作系统
作者
Kaishu Xia,Christopher Sacco,Max Kirkpatrick,Clint Saidy,Lam M. Nguyen,Anil Kircaliali,Ramy Harik
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:58: 210-230 被引量:295
标识
DOI:10.1016/j.jmsy.2020.06.012
摘要

Filling the gaps between virtual and physical systems will open new doors in Smart Manufacturing. This work proposes a data-driven approach to utilize digital transformation methods to automate smart manufacturing systems. This is fundamentally enabled by using a digital twin to represent manufacturing cells, simulate system behaviors, predict process faults, and adaptively control manipulated variables. First, the manufacturing cell is accommodated to environments such as computer-aided applications, industrial Product Lifecycle Management solutions, and control platforms for automation systems. Second, a network of interfaces between the environments is designed and implemented to enable communication between the digital world and physical manufacturing plant, so that near-synchronous controls can be achieved. Third, capabilities of some members in the family of Deep Reinforcement Learning (DRL) are discussed with manufacturing features within the context of Smart Manufacturing. Trained results for Deep Q Learning algorithms are finally presented in this work as a case study to incorporate DRL-based artificial intelligence to the industrial control process. As a result, developed control methodology, named Digital Engine, is expected to acquire process knowledges, schedule manufacturing tasks, identify optimal actions, and demonstrate control robustness. The authors show that integrating a smart agent into the industrial platforms further expands the usage of the system-level digital twin, where intelligent control algorithms are trained and verified upfront before deployed to the physical world for implementation. Moreover, DRL approach to automated manufacturing control problems under facile optimization environments will be a novel combination between data science and manufacturing industries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高铭泽完成签到,获得积分10
1秒前
1秒前
1秒前
PINO完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
DrWho发布了新的文献求助10
2秒前
wwwwww发布了新的文献求助10
3秒前
3秒前
加菲丰丰应助悦耳冰萍采纳,获得60
3秒前
浮游应助Seven采纳,获得20
3秒前
4秒前
jz发布了新的文献求助10
4秒前
4秒前
爆米花应助无限绮南采纳,获得10
4秒前
Song发布了新的文献求助30
4秒前
脑洞疼应助dfsdf采纳,获得10
4秒前
Owen应助璐璇采纳,获得10
5秒前
suns完成签到,获得积分10
5秒前
abb先生发布了新的文献求助150
5秒前
随随完成签到 ,获得积分10
5秒前
6秒前
7秒前
Eve发布了新的文献求助10
7秒前
7秒前
蒋庆完成签到,获得积分10
7秒前
Zx_1993应助FLZLC采纳,获得20
7秒前
缓慢迎波完成签到,获得积分10
8秒前
Orange应助可靠月亮采纳,获得10
8秒前
9秒前
鳗鱼雨寒完成签到,获得积分20
9秒前
9秒前
大胆诗云完成签到,获得积分10
10秒前
纯情的无剑完成签到,获得积分10
10秒前
11秒前
砚草难书完成签到,获得积分10
11秒前
共享精神应助可耐的芙蓉采纳,获得10
11秒前
12秒前
小龟完成签到 ,获得积分10
12秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466602
求助须知:如何正确求助?哪些是违规求助? 4570422
关于积分的说明 14325272
捐赠科研通 4496951
什么是DOI,文献DOI怎么找? 2463624
邀请新用户注册赠送积分活动 1452586
关于科研通互助平台的介绍 1427567