A digital twin to train deep reinforcement learning agent for smart manufacturing plants: Environment, interfaces and intelligence

强化学习 自动化 数字化制造 过程(计算) 计算机科学 工程类 制造执行系统 计算机集成制造 制造工程 人工智能 工业工程 机械工程 操作系统
作者
Kaishu Xia,Christopher Sacco,Max Kirkpatrick,Clint Saidy,Lam M. Nguyen,Anil Kircaliali,Ramy Harik
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:58: 210-230 被引量:276
标识
DOI:10.1016/j.jmsy.2020.06.012
摘要

Filling the gaps between virtual and physical systems will open new doors in Smart Manufacturing. This work proposes a data-driven approach to utilize digital transformation methods to automate smart manufacturing systems. This is fundamentally enabled by using a digital twin to represent manufacturing cells, simulate system behaviors, predict process faults, and adaptively control manipulated variables. First, the manufacturing cell is accommodated to environments such as computer-aided applications, industrial Product Lifecycle Management solutions, and control platforms for automation systems. Second, a network of interfaces between the environments is designed and implemented to enable communication between the digital world and physical manufacturing plant, so that near-synchronous controls can be achieved. Third, capabilities of some members in the family of Deep Reinforcement Learning (DRL) are discussed with manufacturing features within the context of Smart Manufacturing. Trained results for Deep Q Learning algorithms are finally presented in this work as a case study to incorporate DRL-based artificial intelligence to the industrial control process. As a result, developed control methodology, named Digital Engine, is expected to acquire process knowledges, schedule manufacturing tasks, identify optimal actions, and demonstrate control robustness. The authors show that integrating a smart agent into the industrial platforms further expands the usage of the system-level digital twin, where intelligent control algorithms are trained and verified upfront before deployed to the physical world for implementation. Moreover, DRL approach to automated manufacturing control problems under facile optimization environments will be a novel combination between data science and manufacturing industries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助马婷婷采纳,获得10
2秒前
Owen应助迟迟采纳,获得10
2秒前
55555发布了新的文献求助20
2秒前
悦耳的子默完成签到 ,获得积分10
3秒前
3秒前
JuntaoLi发布了新的文献求助10
4秒前
6秒前
依久九九完成签到,获得积分20
6秒前
早晚一杯粥吖应助vv采纳,获得50
6秒前
6秒前
beiyangtidu发布了新的文献求助30
6秒前
6秒前
8秒前
8秒前
顺利山蝶完成签到 ,获得积分10
10秒前
今后应助123采纳,获得10
11秒前
YuanbinMao应助852采纳,获得30
11秒前
单于万言完成签到 ,获得积分10
12秒前
陈莲花发布了新的文献求助10
13秒前
13秒前
杜尚博发布了新的文献求助10
14秒前
lcy发布了新的文献求助10
15秒前
16秒前
吴未发布了新的文献求助10
17秒前
墨浮完成签到,获得积分10
17秒前
CC发布了新的文献求助10
18秒前
尼克狐尼克关注了科研通微信公众号
18秒前
19秒前
烟花应助依久九九采纳,获得10
20秒前
21秒前
22秒前
Leo000007发布了新的文献求助10
23秒前
希望天下0贩的0应助lcy采纳,获得10
27秒前
药化小硕完成签到,获得积分10
28秒前
FashionBoy应助吴未采纳,获得10
28秒前
汉堡包应助卡皮巴拉采纳,获得10
31秒前
TTTaT完成签到,获得积分10
32秒前
32秒前
壮观以松发布了新的文献求助10
33秒前
搜集达人应助王大锤采纳,获得20
34秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The diagnosis of sex before birth using cells from the amniotic fluid (a preliminary report) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229344
求助须知:如何正确求助?哪些是违规求助? 2877046
关于积分的说明 8197662
捐赠科研通 2544371
什么是DOI,文献DOI怎么找? 1374357
科研通“疑难数据库(出版商)”最低求助积分说明 646946
邀请新用户注册赠送积分活动 621742