亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A digital twin to train deep reinforcement learning agent for smart manufacturing plants: Environment, interfaces and intelligence

强化学习 自动化 数字化制造 过程(计算) 计算机科学 工程类 制造执行系统 计算机集成制造 制造工程 人工智能 工业工程 机械工程 操作系统
作者
Kaishu Xia,Christopher Sacco,Max Kirkpatrick,Clint Saidy,Lam M. Nguyen,Anil Kircaliali,Ramy Harik
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:58: 210-230 被引量:295
标识
DOI:10.1016/j.jmsy.2020.06.012
摘要

Filling the gaps between virtual and physical systems will open new doors in Smart Manufacturing. This work proposes a data-driven approach to utilize digital transformation methods to automate smart manufacturing systems. This is fundamentally enabled by using a digital twin to represent manufacturing cells, simulate system behaviors, predict process faults, and adaptively control manipulated variables. First, the manufacturing cell is accommodated to environments such as computer-aided applications, industrial Product Lifecycle Management solutions, and control platforms for automation systems. Second, a network of interfaces between the environments is designed and implemented to enable communication between the digital world and physical manufacturing plant, so that near-synchronous controls can be achieved. Third, capabilities of some members in the family of Deep Reinforcement Learning (DRL) are discussed with manufacturing features within the context of Smart Manufacturing. Trained results for Deep Q Learning algorithms are finally presented in this work as a case study to incorporate DRL-based artificial intelligence to the industrial control process. As a result, developed control methodology, named Digital Engine, is expected to acquire process knowledges, schedule manufacturing tasks, identify optimal actions, and demonstrate control robustness. The authors show that integrating a smart agent into the industrial platforms further expands the usage of the system-level digital twin, where intelligent control algorithms are trained and verified upfront before deployed to the physical world for implementation. Moreover, DRL approach to automated manufacturing control problems under facile optimization environments will be a novel combination between data science and manufacturing industries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jikngsk发布了新的文献求助10
9秒前
17秒前
Raunio完成签到,获得积分10
19秒前
franklin_fsz应助smile采纳,获得30
22秒前
smile完成签到,获得积分10
31秒前
浮游应助科研通管家采纳,获得10
45秒前
mmyhn应助科研通管家采纳,获得10
45秒前
Hello应助科研通管家采纳,获得10
45秒前
45秒前
搜集达人应助科研通管家采纳,获得10
45秒前
烁果累累完成签到 ,获得积分10
49秒前
木子完成签到,获得积分10
54秒前
56秒前
科研通AI2S应助bzy采纳,获得10
56秒前
万能图书馆应助ranan采纳,获得10
1分钟前
科目三应助Fletcherschwann采纳,获得10
1分钟前
1分钟前
田様应助酷酷的冬灵采纳,获得10
1分钟前
1分钟前
酒渡完成签到,获得积分10
1分钟前
1分钟前
冷风完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
Fletcherschwann完成签到,获得积分10
2分钟前
2分钟前
2分钟前
Lucas应助酷酷的冬灵采纳,获得10
2分钟前
2分钟前
Lewis发布了新的文献求助10
2分钟前
斯文败类应助鲜艳的手链采纳,获得10
2分钟前
2分钟前
2分钟前
华仔应助kkkkk采纳,获得10
2分钟前
2分钟前
2分钟前
lingyun4592发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426408
求助须知:如何正确求助?哪些是违规求助? 4540188
关于积分的说明 14171785
捐赠科研通 4457921
什么是DOI,文献DOI怎么找? 2444736
邀请新用户注册赠送积分活动 1435738
关于科研通互助平台的介绍 1413211