A digital twin to train deep reinforcement learning agent for smart manufacturing plants: Environment, interfaces and intelligence

强化学习 自动化 数字化制造 过程(计算) 计算机科学 工程类 制造执行系统 计算机集成制造 制造工程 人工智能 工业工程 机械工程 操作系统
作者
Kaishu Xia,Christopher Sacco,Max Kirkpatrick,Clint Saidy,Lam M. Nguyen,Anil Kircaliali,Ramy Harik
出处
期刊:Journal of Manufacturing Systems [Elsevier BV]
卷期号:58: 210-230 被引量:295
标识
DOI:10.1016/j.jmsy.2020.06.012
摘要

Filling the gaps between virtual and physical systems will open new doors in Smart Manufacturing. This work proposes a data-driven approach to utilize digital transformation methods to automate smart manufacturing systems. This is fundamentally enabled by using a digital twin to represent manufacturing cells, simulate system behaviors, predict process faults, and adaptively control manipulated variables. First, the manufacturing cell is accommodated to environments such as computer-aided applications, industrial Product Lifecycle Management solutions, and control platforms for automation systems. Second, a network of interfaces between the environments is designed and implemented to enable communication between the digital world and physical manufacturing plant, so that near-synchronous controls can be achieved. Third, capabilities of some members in the family of Deep Reinforcement Learning (DRL) are discussed with manufacturing features within the context of Smart Manufacturing. Trained results for Deep Q Learning algorithms are finally presented in this work as a case study to incorporate DRL-based artificial intelligence to the industrial control process. As a result, developed control methodology, named Digital Engine, is expected to acquire process knowledges, schedule manufacturing tasks, identify optimal actions, and demonstrate control robustness. The authors show that integrating a smart agent into the industrial platforms further expands the usage of the system-level digital twin, where intelligent control algorithms are trained and verified upfront before deployed to the physical world for implementation. Moreover, DRL approach to automated manufacturing control problems under facile optimization environments will be a novel combination between data science and manufacturing industries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
昵称应助ChengxinXie采纳,获得20
刚刚
1秒前
万能图书馆应助才地理采纳,获得10
1秒前
2秒前
2秒前
壮壮女士发布了新的文献求助10
2秒前
LIUS完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
梅花完成签到,获得积分10
5秒前
5秒前
十一号发布了新的文献求助10
5秒前
祝你发财完成签到,获得积分20
5秒前
万事顺意发布了新的文献求助10
6秒前
7秒前
少少发布了新的文献求助10
7秒前
文艺路人发布了新的文献求助10
7秒前
酷波er应助kkk采纳,获得10
7秒前
幽梦挽歌发布了新的文献求助10
8秒前
单身的淇发布了新的文献求助10
8秒前
sunnyfriend完成签到,获得积分10
8秒前
伽娜发布了新的文献求助10
9秒前
xiayiyi发布了新的文献求助10
9秒前
领导范儿应助Jessica采纳,获得10
9秒前
10秒前
zhangkele完成签到,获得积分10
10秒前
脑洞疼应助zcs采纳,获得30
10秒前
11秒前
桐桐应助zzb采纳,获得10
11秒前
11秒前
12秒前
12秒前
12秒前
小苏打完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
典雅的俊驰应助姜晓峰采纳,获得10
13秒前
14秒前
14秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603838
求助须知:如何正确求助?哪些是违规求助? 4012374
关于积分的说明 12423535
捐赠科研通 3692896
什么是DOI,文献DOI怎么找? 2035955
邀请新用户注册赠送积分活动 1069072
科研通“疑难数据库(出版商)”最低求助积分说明 953559