A digital twin to train deep reinforcement learning agent for smart manufacturing plants: Environment, interfaces and intelligence

强化学习 自动化 数字化制造 过程(计算) 计算机科学 工程类 制造执行系统 计算机集成制造 制造工程 人工智能 工业工程 机械工程 操作系统
作者
Kaishu Xia,Christopher Sacco,Max Kirkpatrick,Clint Saidy,Lam M. Nguyen,Anil Kircaliali,Ramy Harik
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:58: 210-230 被引量:295
标识
DOI:10.1016/j.jmsy.2020.06.012
摘要

Filling the gaps between virtual and physical systems will open new doors in Smart Manufacturing. This work proposes a data-driven approach to utilize digital transformation methods to automate smart manufacturing systems. This is fundamentally enabled by using a digital twin to represent manufacturing cells, simulate system behaviors, predict process faults, and adaptively control manipulated variables. First, the manufacturing cell is accommodated to environments such as computer-aided applications, industrial Product Lifecycle Management solutions, and control platforms for automation systems. Second, a network of interfaces between the environments is designed and implemented to enable communication between the digital world and physical manufacturing plant, so that near-synchronous controls can be achieved. Third, capabilities of some members in the family of Deep Reinforcement Learning (DRL) are discussed with manufacturing features within the context of Smart Manufacturing. Trained results for Deep Q Learning algorithms are finally presented in this work as a case study to incorporate DRL-based artificial intelligence to the industrial control process. As a result, developed control methodology, named Digital Engine, is expected to acquire process knowledges, schedule manufacturing tasks, identify optimal actions, and demonstrate control robustness. The authors show that integrating a smart agent into the industrial platforms further expands the usage of the system-level digital twin, where intelligent control algorithms are trained and verified upfront before deployed to the physical world for implementation. Moreover, DRL approach to automated manufacturing control problems under facile optimization environments will be a novel combination between data science and manufacturing industries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨蒙博完成签到 ,获得积分10
刚刚
刚刚
深情安青应助月蓉儿采纳,获得10
1秒前
Marts完成签到,获得积分20
2秒前
毛果芸香碱完成签到 ,获得积分10
2秒前
米米碎片发布了新的文献求助10
2秒前
成就的安阳完成签到,获得积分10
3秒前
4秒前
贪玩颦完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
5秒前
FashionBoy应助Light采纳,获得10
5秒前
6秒前
王书涵完成签到,获得积分10
6秒前
淡然冬灵发布了新的文献求助10
7秒前
布鲁塞尔土豆完成签到,获得积分10
7秒前
永和完成签到,获得积分10
7秒前
上官老黑发布了新的文献求助10
9秒前
10秒前
孙意冉完成签到,获得积分10
10秒前
贪玩颦发布了新的文献求助10
10秒前
orixero应助安静的水采纳,获得10
11秒前
吃饭睡觉完成签到,获得积分20
12秒前
12秒前
在水一方应助windtalker采纳,获得10
12秒前
13秒前
ju123完成签到,获得积分10
13秒前
Mea发布了新的文献求助30
15秒前
15秒前
古卡可可完成签到 ,获得积分10
15秒前
15秒前
16秒前
芍药药发布了新的文献求助10
16秒前
聪慧雪糕发布了新的文献求助10
17秒前
可爱的函函应助Wuyi采纳,获得10
17秒前
Akim应助喜喜采纳,获得10
18秒前
Aquila发布了新的文献求助10
18秒前
19秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5457292
求助须知:如何正确求助?哪些是违规求助? 4563793
关于积分的说明 14291406
捐赠科研通 4488476
什么是DOI,文献DOI怎么找? 2458514
邀请新用户注册赠送积分活动 1448579
关于科研通互助平台的介绍 1424214