Continuous estimation of upper limb joint angle from sEMG signals based on SCA-LSTM deep learning approach

计算机科学 人工智能 感知器 接头(建筑物) 模式识别(心理学) 卷积神经网络 运动学 深度学习 自编码 均方误差 语音识别 人工神经网络 计算机视觉 数学 统计 经典力学 物理 工程类 建筑工程
作者
Chunsheng Ma,Lin Chen,Oluwarotimi Williams Samuel,Lisheng Xu,Guanglin Li
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:61: 102024-102024 被引量:45
标识
DOI:10.1016/j.bspc.2020.102024
摘要

Robotic arm control has drawn a lot of attention along with the development of industrialization. The methods based on myoelectric pattern recognition have been proposed with multiple degrees of freedom for years. While these methods can support the actuation of several classes of discrete movements sequentially, they do not allow simultaneous control of multiple movements in a continuous manner like natural arms. In this study, we proposed a short connected autoencoder long short-term memory (SCA-LSTM) based simultaneous and proportional (SP) scheme that estimates continuous arm movements using kinematic information extracted from surface electromyogram (sEMG) recordings. The sEMG signals corresponding to seven classes of shoulder-elbow joint angle movements acquired from eleven participants were preprocessed using max root mean square envelope. Afterwards, the proposed SCA-LSTM model and two commonly applied models, namely, multilayer perceptrons (MLPs) and convolutional neural network (CNN), were trained and tested using the preprocessed data for continuous estimation of arm movements. Our experimental results showed that the proposed SCA-LSTM model could achieve a significantly higher estimation accuracy of approximately 95.7% that is consistently stable across the subjects in comparison to the CNN (86.8%) and MLP (83.4%) models. These results suggest that the proposed SCA-LSTM would be a promising model for continuous estimation of upper limb movements from sEMG signals for prosthetic control.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12完成签到,获得积分10
刚刚
gro_ele完成签到,获得积分10
1秒前
曹贲完成签到,获得积分10
2秒前
cxd发布了新的文献求助10
4秒前
Owen应助67采纳,获得10
4秒前
4秒前
4秒前
5秒前
5秒前
6秒前
天真的冰蝶完成签到,获得积分20
7秒前
XUXU发布了新的文献求助10
7秒前
田様应助廖嘻嘻采纳,获得30
7秒前
胡图图发布了新的文献求助10
8秒前
8秒前
魔音甜菜发布了新的文献求助30
9秒前
cc完成签到,获得积分10
10秒前
小白完成签到,获得积分10
10秒前
orixero应助欧阳采纳,获得10
10秒前
黄大师发布了新的文献求助10
10秒前
Sisyphus发布了新的文献求助10
11秒前
饱满南松发布了新的文献求助10
11秒前
wyp关闭了wyp文献求助
11秒前
英俊的铭应助无私的香菇采纳,获得10
12秒前
wyz完成签到,获得积分10
16秒前
脑洞疼应助劳大采纳,获得10
17秒前
huohuo143发布了新的文献求助10
18秒前
67完成签到,获得积分10
19秒前
科研通AI2S应助jlj采纳,获得10
19秒前
Sisyphus完成签到,获得积分10
20秒前
烂漫草莓完成签到,获得积分10
22秒前
充电宝应助饱满南松采纳,获得10
22秒前
24秒前
orixero应助考研小白采纳,获得10
24秒前
xrc完成签到,获得积分20
25秒前
Owen应助cristin采纳,获得10
25秒前
25秒前
辛勤的芾发布了新的文献求助10
26秒前
26秒前
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992746
求助须知:如何正确求助?哪些是违规求助? 3533621
关于积分的说明 11263200
捐赠科研通 3273346
什么是DOI,文献DOI怎么找? 1806029
邀请新用户注册赠送积分活动 882889
科研通“疑难数据库(出版商)”最低求助积分说明 809609