Continuous estimation of upper limb joint angle from sEMG signals based on SCA-LSTM deep learning approach

计算机科学 人工智能 感知器 接头(建筑物) 模式识别(心理学) 卷积神经网络 运动学 深度学习 自编码 均方误差 语音识别 人工神经网络 计算机视觉 数学 统计 经典力学 物理 工程类 建筑工程
作者
Chenfei Ma,Chuang Lin,Oluwarotimi Williams Samuel,Lisheng Xu,Guanglin Li
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:61: 102024-102024 被引量:66
标识
DOI:10.1016/j.bspc.2020.102024
摘要

Robotic arm control has drawn a lot of attention along with the development of industrialization. The methods based on myoelectric pattern recognition have been proposed with multiple degrees of freedom for years. While these methods can support the actuation of several classes of discrete movements sequentially, they do not allow simultaneous control of multiple movements in a continuous manner like natural arms. In this study, we proposed a short connected autoencoder long short-term memory (SCA-LSTM) based simultaneous and proportional (SP) scheme that estimates continuous arm movements using kinematic information extracted from surface electromyogram (sEMG) recordings. The sEMG signals corresponding to seven classes of shoulder-elbow joint angle movements acquired from eleven participants were preprocessed using max root mean square envelope. Afterwards, the proposed SCA-LSTM model and two commonly applied models, namely, multilayer perceptrons (MLPs) and convolutional neural network (CNN), were trained and tested using the preprocessed data for continuous estimation of arm movements. Our experimental results showed that the proposed SCA-LSTM model could achieve a significantly higher estimation accuracy of approximately 95.7% that is consistently stable across the subjects in comparison to the CNN (86.8%) and MLP (83.4%) models. These results suggest that the proposed SCA-LSTM would be a promising model for continuous estimation of upper limb movements from sEMG signals for prosthetic control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大圣来也发布了新的文献求助10
刚刚
在水一方应助11采纳,获得10
1秒前
1秒前
Wind应助愉快小猪采纳,获得10
2秒前
10086发布了新的文献求助10
2秒前
上官若男应助无心的月亮采纳,获得10
3秒前
aaa发布了新的文献求助10
3秒前
3秒前
3秒前
Alan发布了新的文献求助10
3秒前
得意黑发布了新的文献求助10
3秒前
Honghao完成签到,获得积分10
4秒前
stiger应助111采纳,获得50
4秒前
ppat5012发布了新的文献求助10
4秒前
zhangsf88完成签到,获得积分10
4秒前
ioii完成签到,获得积分10
4秒前
情怀应助JansonLin采纳,获得10
4秒前
左丘易梦发布了新的文献求助10
4秒前
4秒前
5秒前
hcy完成签到,获得积分10
5秒前
6秒前
浮游应助科研通管家采纳,获得10
6秒前
guozizi应助科研通管家采纳,获得20
6秒前
王w应助科研通管家采纳,获得30
6秒前
ii发布了新的文献求助10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
6秒前
Momomo应助科研通管家采纳,获得10
6秒前
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
7秒前
完美世界应助科研通管家采纳,获得10
7秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699679
求助须知:如何正确求助?哪些是违规求助? 5132628
关于积分的说明 15227678
捐赠科研通 4854695
什么是DOI,文献DOI怎么找? 2604865
邀请新用户注册赠送积分活动 1556246
关于科研通互助平台的介绍 1514444