Atomically dispersed Fe–N–C decorated with Pt-alloy core–shell nanoparticles for improved activity and durability towards oxygen reduction

耐久性 合金 材料科学 纳米颗粒 壳体(结构) 芯(光纤) 还原(数学) 化学工程 氧还原反应 氧还原 纳米技术 冶金 复合材料 化学 电化学 电极 工程类 物理化学 数学 几何学
作者
Xiang Ao,Wei Zhang,Bote Zhao,Yong Ding,Gyutae Nam,Luke Soule,Ali Abdelhafiz,Chundong Wang,Meilin Liu
出处
期刊:Energy and Environmental Science [Royal Society of Chemistry]
卷期号:13 (9): 3032-3040 被引量:267
标识
DOI:10.1039/d0ee00832j
摘要

One of the key challenges that hinders broad commercialization of proton exchange membrane fuel cells is the high cost and inadequate performance of the catalysts for the oxygen reduction reaction (ORR). Here we report a composite ORR catalyst consisting of ordered intermetallic Pt-alloy nanoparticles attached to an N-doped carbon substrate with atomically dispersed Fe–N–C sites, demonstrating substantially enhanced catalytic activity and durability, achieving a half-wave potential of 0.923 V (vs. RHE) and negligible activity loss after 5000 cycles of an accelerated durability test. The composite catalyst is prepared by deposition of Pt nanoparticles on an N-doped carbon substrate with atomically dispersed Fe–N–C sites derived from a metal–organic framework and subsequent thermal treatment. The latter results in the formation of core–shell structured Pt-alloy nanoparticles with ordered intermetallic Pt3M (M = Fe and Zn) as the core and Pt atoms on the shell surface, which is beneficial to both the ORR activity and stability. The presence of Fe in the porous Fe–N–C substrate not only provides more active sites for the ORR but also effectively enhances the durability of the composite catalyst. The observed enhancement in performance is attributed mainly to the unique structure of the composite catalyst, as confirmed by experimental measurements and computational analyses. Furthermore, a fuel cell constructed using the as-developed ORR catalyst demonstrates a peak power density of 1.31 W cm−2. The strategy developed in this work is applicable to the development of composite catalysts for other electrocatalytic reactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三七发布了新的文献求助10
1秒前
1秒前
李爱国应助路人甲采纳,获得10
1秒前
Lucas应助Yeong采纳,获得10
3秒前
jatwing发布了新的文献求助10
4秒前
打打应助zihi采纳,获得10
4秒前
4秒前
慕青应助AI采纳,获得10
5秒前
所所应助ZUOWEI采纳,获得10
5秒前
跳跃的不二完成签到 ,获得积分10
6秒前
6秒前
科研Mayormm发布了新的文献求助10
6秒前
小月月发布了新的文献求助10
7秒前
yujingzi完成签到,获得积分20
7秒前
7秒前
8秒前
9秒前
conny完成签到,获得积分10
10秒前
ronnie完成签到,获得积分10
10秒前
岸边渔客发布了新的文献求助10
10秒前
Hhhhh发布了新的文献求助10
11秒前
李浩然发布了新的文献求助10
12秒前
12秒前
换乘点发布了新的文献求助10
13秒前
13秒前
年少丶完成签到,获得积分10
14秒前
末岛完成签到,获得积分10
14秒前
梅豪完成签到,获得积分10
15秒前
俏皮天德发布了新的文献求助10
15秒前
今后应助Hhhhh采纳,获得10
16秒前
16秒前
拼搏巧曼发布了新的文献求助10
16秒前
岸边渔客完成签到,获得积分10
17秒前
17秒前
17秒前
shinble发布了新的文献求助30
17秒前
yanglin完成签到,获得积分20
18秒前
18秒前
18秒前
18秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3774793
求助须知:如何正确求助?哪些是违规求助? 3320610
关于积分的说明 10201149
捐赠科研通 3035379
什么是DOI,文献DOI怎么找? 1665498
邀请新用户注册赠送积分活动 796972
科研通“疑难数据库(出版商)”最低求助积分说明 757667