Atomically dispersed Fe–N–C decorated with Pt-alloy core–shell nanoparticles for improved activity and durability towards oxygen reduction

耐久性 合金 材料科学 纳米颗粒 壳体(结构) 芯(光纤) 还原(数学) 化学工程 氧还原反应 氧气 氧还原 纳米技术 冶金 复合材料 化学 电化学 电极 工程类 物理化学 有机化学 数学 几何学
作者
Xiang Ao,Wei Zhang,Bote Zhao,Yong Ding,Gyutae Nam,Luke Soule,Ali Abdelhafiz,Chundong Wang,Meilin Liu
出处
期刊:Energy and Environmental Science [The Royal Society of Chemistry]
卷期号:13 (9): 3032-3040 被引量:235
标识
DOI:10.1039/d0ee00832j
摘要

One of the key challenges that hinders broad commercialization of proton exchange membrane fuel cells is the high cost and inadequate performance of the catalysts for the oxygen reduction reaction (ORR). Here we report a composite ORR catalyst consisting of ordered intermetallic Pt-alloy nanoparticles attached to an N-doped carbon substrate with atomically dispersed Fe–N–C sites, demonstrating substantially enhanced catalytic activity and durability, achieving a half-wave potential of 0.923 V (vs. RHE) and negligible activity loss after 5000 cycles of an accelerated durability test. The composite catalyst is prepared by deposition of Pt nanoparticles on an N-doped carbon substrate with atomically dispersed Fe–N–C sites derived from a metal–organic framework and subsequent thermal treatment. The latter results in the formation of core–shell structured Pt-alloy nanoparticles with ordered intermetallic Pt3M (M = Fe and Zn) as the core and Pt atoms on the shell surface, which is beneficial to both the ORR activity and stability. The presence of Fe in the porous Fe–N–C substrate not only provides more active sites for the ORR but also effectively enhances the durability of the composite catalyst. The observed enhancement in performance is attributed mainly to the unique structure of the composite catalyst, as confirmed by experimental measurements and computational analyses. Furthermore, a fuel cell constructed using the as-developed ORR catalyst demonstrates a peak power density of 1.31 W cm−2. The strategy developed in this work is applicable to the development of composite catalysts for other electrocatalytic reactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
务实的绝悟完成签到,获得积分10
刚刚
恐怖稽器人完成签到,获得积分10
刚刚
胖小羊完成签到 ,获得积分10
1秒前
雨辰完成签到,获得积分10
2秒前
月半小董完成签到,获得积分10
2秒前
执着念寒完成签到,获得积分20
3秒前
3秒前
特大包包完成签到,获得积分10
3秒前
青衍应助蜂鸟5156采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得20
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
时冬冬应助科研通管家采纳,获得10
4秒前
今后应助科研通管家采纳,获得10
5秒前
Satoru应助科研通管家采纳,获得10
5秒前
5秒前
王者归来发布了新的文献求助10
5秒前
泥泞完成签到 ,获得积分10
5秒前
Dreamer0422发布了新的文献求助10
6秒前
飞0802完成签到,获得积分10
6秒前
东十八完成签到 ,获得积分10
7秒前
222完成签到,获得积分10
7秒前
8秒前
傅寒天完成签到,获得积分10
8秒前
WangBK完成签到,获得积分10
9秒前
lxy完成签到,获得积分10
9秒前
赘婿应助莫小乔斯采纳,获得10
9秒前
吃的完成签到,获得积分10
10秒前
11秒前
DocRyan完成签到,获得积分10
11秒前
雨晴完成签到,获得积分20
11秒前
123完成签到,获得积分10
11秒前
爱静静应助dove采纳,获得30
11秒前
YDSG完成签到,获得积分10
12秒前
sun2ot完成签到,获得积分10
12秒前
奋斗魂幽完成签到 ,获得积分0
13秒前
莫遥完成签到 ,获得积分10
13秒前
sun完成签到,获得积分10
14秒前
雨晴发布了新的文献求助30
15秒前
caoyanhua完成签到 ,获得积分10
15秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 870
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3253246
求助须知:如何正确求助?哪些是违规求助? 2895752
关于积分的说明 8287872
捐赠科研通 2564639
什么是DOI,文献DOI怎么找? 1392493
科研通“疑难数据库(出版商)”最低求助积分说明 652220
邀请新用户注册赠送积分活动 629433