A Deep Journey into Super-resolution

计算机科学 深度学习 卷积神经网络 水准点(测量) 内存占用 人工智能 残余物 机器学习 算法 大地测量学 操作系统 地理
作者
Saeed Anwar,Salman Khan,Nick Barnes
出处
期刊:ACM Computing Surveys [Association for Computing Machinery]
卷期号:53 (3): 1-34 被引量:291
标识
DOI:10.1145/3390462
摘要

Deep convolutional networks–based super-resolution is a fast-growing field with numerous practical applications. In this exposition, we extensively compare more than 30 state-of-the-art super-resolution Convolutional Neural Networks (CNNs) over three classical and three recently introduced challenging datasets to benchmark single image super-resolution. We introduce a taxonomy for deep learning–based super-resolution networks that groups existing methods into nine categories including linear, residual, multi-branch, recursive, progressive, attention-based, and adversarial designs. We also provide comparisons between the models in terms of network complexity, memory footprint, model input and output, learning details, the type of network losses, and important architectural differences (e.g., depth, skip-connections, filters). The extensive evaluation performed shows the consistent and rapid growth in the accuracy in the past few years along with a corresponding boost in model complexity and the availability of large-scale datasets. It is also observed that the pioneering methods identified as the benchmarks have been significantly outperformed by the current contenders. Despite the progress in recent years, we identify several shortcomings of existing techniques and provide future research directions towards the solution of these open problems. Datasets and codes for evaluation are publicly available at https://github.com/saeed-anwar/SRsurvey.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
蒋若风发布了新的文献求助10
1秒前
buno应助张益发采纳,获得10
1秒前
2秒前
LQQ发布了新的文献求助10
2秒前
轻歌水越发布了新的文献求助10
2秒前
2秒前
Owen应助怕孤独的迎梦采纳,获得10
2秒前
霖尤发布了新的文献求助20
3秒前
3秒前
遇见完成签到,获得积分20
3秒前
尼古拉斯发布了新的文献求助10
4秒前
4秒前
在水一方应助HCT采纳,获得10
5秒前
hhl完成签到,获得积分10
5秒前
5秒前
Eukarya完成签到,获得积分10
5秒前
勿忘9451发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
zzz完成签到,获得积分10
7秒前
清脆苑博发布了新的文献求助10
7秒前
xuxuux完成签到,获得积分10
7秒前
8秒前
cc发布了新的文献求助10
8秒前
8秒前
ceeray23应助薄荷喵采纳,获得10
8秒前
在水一方应助小宇采纳,获得10
9秒前
4149发布了新的文献求助10
9秒前
9秒前
10秒前
无极微光应助123456采纳,获得20
11秒前
夕寸发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
英姑应助七点半采纳,获得10
12秒前
LYP发布了新的文献求助10
12秒前
12秒前
充电宝应助星星采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608407
求助须知:如何正确求助?哪些是违规求助? 4693040
关于积分的说明 14876313
捐赠科研通 4717445
什么是DOI,文献DOI怎么找? 2544206
邀请新用户注册赠送积分活动 1509230
关于科研通互助平台的介绍 1472836