Abstract 17224: Metabolic Switch and Redox Imbalance Contributes to Pulmonary Hypertension in Glucose-6-Phosphate Dehydrogenase Deficiency

磷酸戊糖途径 医学 氧化应激 肺动脉高压 缺氧(环境) 内科学 发病机制 氧化磷酸化 内分泌学 下调和上调 糖酵解 葡萄糖-6-磷酸脱氢酶 葡萄糖-6-磷酸脱氢酶缺乏症 丙酮酸脱氢酶复合物 脱氢酶 新陈代谢 生物化学 生物 化学 氧气 有机化学 基因
作者
Mathews Valuparampil Varghes,Joel James,Olga Rafikova,Ruslan Rafikov
出处
期刊:Circulation [Lippincott Williams & Wilkins]
卷期号:142 (Suppl_3)
标识
DOI:10.1161/circ.142.suppl_3.17224
摘要

Introduction: Pulmonary hypertension (PH) is a fatal disorder with inadequate therapeutic choices and diminished survival rate with later prognosis. We previously reported that several patients with idiopathic pulmonary arterial hypertension had different types of glucose-6 phosphate dehydrogenase (G6PD) deficiency. G6PD is the key regulator enzyme in the pentose phosphate pathway (PPP) and the only source of NADPH in erythrocytes. However, the pathogenic mechanism of how G6PD deficiency contributes to PH development remains elusive. Hypothesis: We hypothesize that G6PD deficiency-induced PH is mediated through a multifactorial mechanism by increased red blood cell fragility, oxidative stress, and a metabolic switch. Methods: To delineate the contribution of G6PD in PH pathogenesis, we utilized a G6PD knockdown mouse line (11-13 week old) with decreased expression of G6PD (10% from wild-type level). Results: Hemodynamic and histological studies confirmed that G6PD deficient mice developed PH phenotype by an increase in right ventricular systolic pressure (30.08±0.91mmHg; p≤0.001), Fulton index (0.358±0.03; p≤0.01) and pulmonary vascular remodeling. G6PD deficiency resulted in increased free hemoglobin and activation of the p38/MAPK pathway, which we recently reported, induces the development of PH in the sugen/hypoxia model via endothelial barrier dysfunction. Metabolomics analysis of G6PD-deficient mice indicates the switch to alternative metabolic fluxes that feed into PPP, resulting in the upregulation of oxidative stress, fatty acid pathway, and reduction in pyruvate production. Thus, G6PD deficiency did not reduce PPP flux that is important for proliferation but activated collateral pathways at the cost of increased oxidative stress. Indeed, we found upregulation of Myo-inositol oxidase (p≤0.05), reduction in GSH/GSSG ratio (p≤0.01), and increased nitration (p≤0.05) in the lungs of G6PD deficient mice. Increased oxidative stress also results in the activation of PI3K, ERK1/2 and AMPK that contributes to the proliferation of pulmonary vasculature. Conclusions: Based on these results we infer that G6PD deficiency has a multi-modal effect, including hemolysis, metabolic reprogramming, and oxidative stress leading to PH.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Gouki完成签到 ,获得积分10
刚刚
晓驿发布了新的文献求助100
刚刚
1秒前
chizhi完成签到,获得积分10
2秒前
jjc发布了新的文献求助10
2秒前
CodeCraft应助PhDL1采纳,获得10
2秒前
lyp7028完成签到,获得积分10
2秒前
王孝松发布了新的文献求助10
3秒前
陈昭琼发布了新的文献求助10
3秒前
研友_VZG64n完成签到,获得积分10
3秒前
LIUY发布了新的文献求助10
3秒前
enen发布了新的文献求助10
4秒前
4秒前
4秒前
清韵微风完成签到,获得积分10
4秒前
雨晴发布了新的文献求助10
5秒前
Jasper应助uu白采纳,获得10
6秒前
6秒前
化身孤岛的鲸完成签到 ,获得积分10
6秒前
Duha完成签到,获得积分10
7秒前
7秒前
7秒前
上上签完成签到,获得积分10
7秒前
醉熏的雁完成签到 ,获得积分10
8秒前
情怀应助Gao采纳,获得10
8秒前
NanNan626发布了新的文献求助10
8秒前
8秒前
杭紫雪完成签到,获得积分10
8秒前
Re完成签到,获得积分10
8秒前
温柔的中蓝完成签到,获得积分10
8秒前
Akim应助暴躁的小蘑菇采纳,获得10
9秒前
懒羊羊完成签到,获得积分10
9秒前
繁荣的凡双完成签到,获得积分10
9秒前
momo完成签到,获得积分10
9秒前
10秒前
科研通AI6应助笑傲江湖采纳,获得30
10秒前
量子星尘发布了新的文献求助10
10秒前
mingxuan完成签到,获得积分10
11秒前
《子非鱼》完成签到,获得积分10
11秒前
cccc完成签到,获得积分10
11秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Oxford Learner's Pocket Word Skills 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5151604
求助须知:如何正确求助?哪些是违规求助? 4347231
关于积分的说明 13536167
捐赠科研通 4189937
什么是DOI,文献DOI怎么找? 2297805
邀请新用户注册赠送积分活动 1298127
关于科研通互助平台的介绍 1242778