Abstract 17224: Metabolic Switch and Redox Imbalance Contributes to Pulmonary Hypertension in Glucose-6-Phosphate Dehydrogenase Deficiency

磷酸戊糖途径 医学 氧化应激 肺动脉高压 缺氧(环境) 内科学 发病机制 氧化磷酸化 内分泌学 下调和上调 糖酵解 葡萄糖-6-磷酸脱氢酶 葡萄糖-6-磷酸脱氢酶缺乏症 丙酮酸脱氢酶复合物 脱氢酶 新陈代谢 生物化学 生物 化学 氧气 有机化学 基因
作者
Mathews Valuparampil Varghes,Joel James,Olga Rafikova,Ruslan Rafikov
出处
期刊:Circulation [Ovid Technologies (Wolters Kluwer)]
卷期号:142 (Suppl_3)
标识
DOI:10.1161/circ.142.suppl_3.17224
摘要

Introduction: Pulmonary hypertension (PH) is a fatal disorder with inadequate therapeutic choices and diminished survival rate with later prognosis. We previously reported that several patients with idiopathic pulmonary arterial hypertension had different types of glucose-6 phosphate dehydrogenase (G6PD) deficiency. G6PD is the key regulator enzyme in the pentose phosphate pathway (PPP) and the only source of NADPH in erythrocytes. However, the pathogenic mechanism of how G6PD deficiency contributes to PH development remains elusive. Hypothesis: We hypothesize that G6PD deficiency-induced PH is mediated through a multifactorial mechanism by increased red blood cell fragility, oxidative stress, and a metabolic switch. Methods: To delineate the contribution of G6PD in PH pathogenesis, we utilized a G6PD knockdown mouse line (11-13 week old) with decreased expression of G6PD (10% from wild-type level). Results: Hemodynamic and histological studies confirmed that G6PD deficient mice developed PH phenotype by an increase in right ventricular systolic pressure (30.08±0.91mmHg; p≤0.001), Fulton index (0.358±0.03; p≤0.01) and pulmonary vascular remodeling. G6PD deficiency resulted in increased free hemoglobin and activation of the p38/MAPK pathway, which we recently reported, induces the development of PH in the sugen/hypoxia model via endothelial barrier dysfunction. Metabolomics analysis of G6PD-deficient mice indicates the switch to alternative metabolic fluxes that feed into PPP, resulting in the upregulation of oxidative stress, fatty acid pathway, and reduction in pyruvate production. Thus, G6PD deficiency did not reduce PPP flux that is important for proliferation but activated collateral pathways at the cost of increased oxidative stress. Indeed, we found upregulation of Myo-inositol oxidase (p≤0.05), reduction in GSH/GSSG ratio (p≤0.01), and increased nitration (p≤0.05) in the lungs of G6PD deficient mice. Increased oxidative stress also results in the activation of PI3K, ERK1/2 and AMPK that contributes to the proliferation of pulmonary vasculature. Conclusions: Based on these results we infer that G6PD deficiency has a multi-modal effect, including hemolysis, metabolic reprogramming, and oxidative stress leading to PH.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
厄尔尼诺完成签到,获得积分10
刚刚
hujun完成签到 ,获得积分10
刚刚
四糸乃完成签到,获得积分10
刚刚
仁爱的秋天完成签到,获得积分10
1秒前
jiangtao完成签到,获得积分10
1秒前
端庄千琴完成签到,获得积分10
1秒前
笑嘻嘻完成签到,获得积分10
2秒前
旺仔仔发布了新的文献求助10
3秒前
3秒前
jiyixiao1完成签到,获得积分10
3秒前
JINJIN完成签到,获得积分10
3秒前
dhongyan完成签到,获得积分10
4秒前
李爱国应助jctyp采纳,获得10
5秒前
和平发展完成签到,获得积分10
5秒前
2222222222发布了新的文献求助10
5秒前
王二哈完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
美好忆霜完成签到,获得积分10
6秒前
FashionBoy应助wjw采纳,获得10
7秒前
susan完成签到 ,获得积分10
7秒前
setid完成签到 ,获得积分10
7秒前
石榴脆莆完成签到,获得积分10
7秒前
慈祥的花瓣完成签到,获得积分10
7秒前
roselin26完成签到,获得积分10
8秒前
醉清风完成签到 ,获得积分10
8秒前
xxp发布了新的文献求助10
8秒前
8秒前
nby完成签到,获得积分10
9秒前
9秒前
科目三应助山君采纳,获得10
9秒前
wacfpp完成签到,获得积分10
9秒前
lulull完成签到,获得积分10
9秒前
好嗨哟完成签到,获得积分10
10秒前
my123完成签到,获得积分10
10秒前
爱学习的GGbond完成签到,获得积分10
11秒前
AI完成签到,获得积分10
11秒前
wakkkkk完成签到,获得积分10
11秒前
星辰大海应助Yyyy采纳,获得10
11秒前
ZJJ完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
扫描探针电化学 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5439032
求助须知:如何正确求助?哪些是违规求助? 4550108
关于积分的说明 14222413
捐赠科研通 4471061
什么是DOI,文献DOI怎么找? 2450182
邀请新用户注册赠送积分活动 1441117
关于科研通互助平台的介绍 1417735