A comparison of full information maximum likelihood and multiple imputation in structural equation modeling with missing data.

估计员 统计 缺少数据 数学 插补(统计学) 蒙特卡罗方法 结构方程建模 均方误差 限制最大似然 人口 样本量测定 计量经济学 最大似然 社会学 人口学
作者
Taehun Lee,Dexin Shi
出处
期刊:Psychological Methods [American Psychological Association]
卷期号:26 (4): 466-485 被引量:236
标识
DOI:10.1037/met0000381
摘要

This article compares two missing data procedures, full information maximum likelihood (FIML) and multiple imputation (MI), to investigate their relative performances in relation to the results from analyses of the original complete data or the hypothetical data available before missingness occurred. By expressing the FIML estimator as a special MI estimator, we predicted the expected patterns of discrepancy between the two estimators. Via Monte Carlo simulation studies where we have access to the original complete data, we compare the performance of FIML and MI estimators to that of the complete data maximum likelihood (ML) estimator under a wide range of conditions, including differences in sample size, percent of missingness, and degrees of model misfit. Our study confirmed well-known knowledge that the two estimators tend to yield essentially equivalent results to each other and to those from analysis of complete data when the postulated model is correctly specified. However, some noteworthy patterns of discrepancies were found between the FIML and MI estimators when the hypothesized model does not hold exactly in the population: MI-based parameter estimates, comparative fit index (CFI), and the Tucker Lewis index (TLI) tend to be closer to the counterparts of the complete data ML estimates, whereas FIML-based chi-squares and root mean square error of approximation (RMSEA) tend to be closer to the counterparts of the complete data ML estimates. We explained the observed patterns of discrepancy between the two estimators as a function of the interplay between the parsimony and accuracy of the imputation model. We concluded by discussing practical and methodological implications and issues for further research. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
左转完成签到,获得积分10
2秒前
Mic应助subathust采纳,获得10
2秒前
完美世界应助sci采纳,获得10
2秒前
clm完成签到 ,获得积分10
3秒前
5秒前
00完成签到 ,获得积分10
5秒前
9秒前
jiuzhege完成签到 ,获得积分10
9秒前
11秒前
daguan发布了新的文献求助10
11秒前
呆萌芙蓉完成签到 ,获得积分10
12秒前
YF完成签到 ,获得积分10
13秒前
小胖完成签到 ,获得积分10
13秒前
几几完成签到,获得积分10
15秒前
LYJ完成签到,获得积分10
15秒前
wansida完成签到,获得积分10
16秒前
1259杨完成签到,获得积分10
19秒前
等待念之完成签到,获得积分10
19秒前
Murphy完成签到 ,获得积分10
23秒前
huiluowork完成签到 ,获得积分10
27秒前
南星完成签到 ,获得积分10
28秒前
华仔应助熊熊阁采纳,获得10
28秒前
皖医梁朝伟完成签到 ,获得积分0
31秒前
专注的问寒应助ceeray23采纳,获得50
31秒前
Hey完成签到 ,获得积分10
32秒前
SciGPT应助默默采纳,获得10
35秒前
舒心的雍发布了新的文献求助10
36秒前
39秒前
39秒前
英姑应助daguan采纳,获得10
40秒前
liubo完成签到,获得积分10
40秒前
alala应助ll采纳,获得10
41秒前
41秒前
43秒前
庾尔风发布了新的文献求助10
44秒前
熊熊阁发布了新的文献求助10
44秒前
孙同学发布了新的文献求助10
45秒前
小王好饿完成签到 ,获得积分10
46秒前
闪闪寄风完成签到,获得积分10
47秒前
默默发布了新的文献求助10
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Campbell Walsh Wein Urology 3-Volume Set 12th Edition 200
Three-dimensional virtual model for robot-assisted partial nephrectomy in totally endophytic renal tumors: a propensity-score matching analysis with a control group 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5866712
求助须知:如何正确求助?哪些是违规求助? 6426461
关于积分的说明 15654910
捐赠科研通 4981701
什么是DOI,文献DOI怎么找? 2686725
邀请新用户注册赠送积分活动 1629535
关于科研通互助平台的介绍 1587532