A comparison of full information maximum likelihood and multiple imputation in structural equation modeling with missing data.

估计员 统计 缺少数据 数学 插补(统计学) 蒙特卡罗方法 结构方程建模 均方误差 限制最大似然 人口 样本量测定 计量经济学 最大似然 社会学 人口学
作者
Taehun Lee,Dexin Shi
出处
期刊:Psychological Methods [American Psychological Association]
卷期号:26 (4): 466-485 被引量:187
标识
DOI:10.1037/met0000381
摘要

This article compares two missing data procedures, full information maximum likelihood (FIML) and multiple imputation (MI), to investigate their relative performances in relation to the results from analyses of the original complete data or the hypothetical data available before missingness occurred. By expressing the FIML estimator as a special MI estimator, we predicted the expected patterns of discrepancy between the two estimators. Via Monte Carlo simulation studies where we have access to the original complete data, we compare the performance of FIML and MI estimators to that of the complete data maximum likelihood (ML) estimator under a wide range of conditions, including differences in sample size, percent of missingness, and degrees of model misfit. Our study confirmed well-known knowledge that the two estimators tend to yield essentially equivalent results to each other and to those from analysis of complete data when the postulated model is correctly specified. However, some noteworthy patterns of discrepancies were found between the FIML and MI estimators when the hypothesized model does not hold exactly in the population: MI-based parameter estimates, comparative fit index (CFI), and the Tucker Lewis index (TLI) tend to be closer to the counterparts of the complete data ML estimates, whereas FIML-based chi-squares and root mean square error of approximation (RMSEA) tend to be closer to the counterparts of the complete data ML estimates. We explained the observed patterns of discrepancy between the two estimators as a function of the interplay between the parsimony and accuracy of the imputation model. We concluded by discussing practical and methodological implications and issues for further research. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小甜菜完成签到,获得积分10
刚刚
橙子快跑发布了新的文献求助10
1秒前
2秒前
2秒前
123木头人完成签到,获得积分10
2秒前
5秒前
superZ完成签到 ,获得积分10
5秒前
6秒前
lifescience1完成签到,获得积分10
8秒前
8秒前
9秒前
xiaozhejia完成签到,获得积分10
11秒前
renqianjun关注了科研通微信公众号
12秒前
linjunqi发布了新的文献求助10
12秒前
domkps完成签到 ,获得积分10
12秒前
13秒前
情怀应助大G采纳,获得10
13秒前
yi完成签到,获得积分10
14秒前
华仔应助破晓采纳,获得10
14秒前
草木发布了新的文献求助10
14秒前
所所应助喜悦的冰菱采纳,获得10
14秒前
汤姆发布了新的文献求助30
16秒前
丘奇完成签到,获得积分10
16秒前
所所应助代睿采纳,获得20
18秒前
厉不厉害你坤哥完成签到,获得积分10
19秒前
19秒前
老默发布了新的文献求助10
20秒前
爱晴天的小妮子完成签到 ,获得积分20
20秒前
23秒前
Zr发布了新的文献求助20
24秒前
24秒前
FashionBoy应助科研通管家采纳,获得10
27秒前
CodeCraft应助科研通管家采纳,获得10
27秒前
Lucas应助科研通管家采纳,获得10
27秒前
Hello应助科研通管家采纳,获得10
27秒前
英俊的铭应助科研通管家采纳,获得30
27秒前
情怀应助科研通管家采纳,获得10
27秒前
Jasper应助科研通管家采纳,获得10
27秒前
27秒前
28秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3316075
求助须知:如何正确求助?哪些是违规求助? 2947746
关于积分的说明 8538365
捐赠科研通 2623822
什么是DOI,文献DOI怎么找? 1435519
科研通“疑难数据库(出版商)”最低求助积分说明 665613
邀请新用户注册赠送积分活动 651457