In Situ 3D-to-2D Transformation of Manganese-Based Layered Silicates for Tumor-Specific T1-Weighted Magnetic Resonance Imaging with High Signal-to-Noise and Excretability

材料科学 原位 转化(遗传学) 磁共振成像 噪音(视频) 信噪比(成像) 核磁共振 信号(编程语言) 光学 图像(数学) 物理 计算机科学 人工智能 放射科 气象学 化学 冶金 程序设计语言 基因 医学 生物化学
作者
Xiaowei Li,Hao Zhou,Zhihui Niu,Kang Zheng,Dechao Niu,Wenru Zhao,Xiaohang Liu,Weimeng Si,Chengfeng Li,Peng Wang,Jun Cao,Yongsheng Li,Guangwu Wen
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:12 (22): 24644-24654 被引量:11
标识
DOI:10.1021/acsami.0c07018
摘要

Recently, Mn(II)-based T1-weighted magnetic resonance imaging (MRI) contrast agents (CAs) have been explored widely for cancer diagnosis. However, the "always-on" properties and poor excretability of the conventional Mn(II)-based CAs leads to high background signals and unsatisfactory clearance from the body. Here, we report an "in situ three-dimensional to two-dimensional (3D-to-2D) transformation" method to prepare novel excretable 2D manganese-based layered silicates (Mn-LSNs) with extremely high signal-to-noise for tumor-specific MR imaging for the first time. Our observations combined with density functional theory (DFT) calculations reveal that 3D metal (Mn, Fe, Co) oxide nanoparticles are initially formed from the molecular precursor solution and then in situ transform into 2D metal (Mn, Fe, Co)-based layered silicates triggered by the addition of tetraethyl orthosilicate, which provides a time-saving and versatile way to prepare novel 2D silicate nanomaterials. The unique ion-exchangeable capacity and high host layer charge density endow Mn-LSNs with an "ON/OFF" pH/GSH stimuli-activatable T1 relaxivity with superb high signal-to-noise (640-, 1200-fold for slightly acidic and reductive changes, respectively). Further in vivo MR imaging reveals that Mn-LSNs exhibit a continuously rapid T1-MRI signal enhancement in tumor tissue and no visible signal enhancement in normal tissue, indicating an excellent tumor-specific imaging. In addition, Mn-LSNs exhibit a rapid excretion from the mouse body in 24 h and invisible organ toxicity, which could help to solve the critical intractable degradation issue of conventional inorganic CAs. Moreover, the tumor microenvironment (pH/GSH/H2O2) specific degradability of Mn-LSNs could help to improve the penetration depth of particles into the tumor parenchyma. Developing this novel Mn-LSNs contrast agent, together with the already demonstrated capacity of layered silicates for drug and gene delivery, provides opportunities for future cancer theranostics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助xfffffff采纳,获得10
刚刚
西西完成签到,获得积分10
1秒前
上善若水666完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
ZoeChoo完成签到,获得积分10
2秒前
kk完成签到,获得积分10
2秒前
3秒前
千里江山一只蝇完成签到,获得积分10
3秒前
吃的饭广泛发布了新的文献求助200
4秒前
庾傀斗发布了新的文献求助10
4秒前
Warten995完成签到,获得积分10
4秒前
4秒前
chouchou完成签到,获得积分10
5秒前
点墨完成签到 ,获得积分10
5秒前
COCO发布了新的文献求助10
6秒前
zq完成签到,获得积分20
7秒前
热心冷亦发布了新的文献求助10
8秒前
Daisy完成签到,获得积分10
8秒前
8秒前
梵莫完成签到,获得积分10
9秒前
LX发布了新的文献求助10
9秒前
庾傀斗完成签到,获得积分10
9秒前
9秒前
10秒前
CodeCraft应助guanshujuan采纳,获得10
10秒前
SciGPT应助夏天采纳,获得10
10秒前
棋士应助蓝胖子采纳,获得20
10秒前
wysy发布了新的文献求助10
10秒前
JamesPei应助zhc采纳,获得10
11秒前
11秒前
11秒前
加贝完成签到,获得积分10
11秒前
猪肉水饺发布了新的文献求助10
11秒前
我劝告了风完成签到,获得积分10
12秒前
12秒前
14秒前
司空博涛发布了新的文献求助10
14秒前
Singularity应助zzz采纳,获得10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951389
求助须知:如何正确求助?哪些是违规求助? 3496717
关于积分的说明 11084234
捐赠科研通 3227173
什么是DOI,文献DOI怎么找? 1784313
邀请新用户注册赠送积分活动 868345
科研通“疑难数据库(出版商)”最低求助积分说明 801110