三苯胺
色素敏化染料
密度泛函理论
自然键轨道
接受者
电子受体
材料科学
开路电压
轨道能级差
光化学
含时密度泛函理论
短路
化学
计算化学
物理化学
分子
有机化学
电极
电解质
物理
量子力学
电压
凝聚态物理
作者
Ahmed Slimi,Mohamed Hachi,Asmae Fitri,Adil Touimi Benjelloun,Souad Elkhattabi,M. Benzakour,Mohammed Mcharfi,Mohammed Khenfouch,Izeddine Zorkani,Mohammed Bouachrine
标识
DOI:10.1016/j.jphotochem.2020.112572
摘要
Six novel D-π-A organic dyes based on 3D triphenylamine derivative (IDTTPA) featuring indenothiophene unit have been designed and theoretically investigated using Density Functional Theory (DFT) and Time-Dependent Density Functional Theory (TD-DFT). By modulating the anchoring group, the efficiency of D-π-A dyes-based dye-sensitized solar cells (DSSCs) can be further improved. Indeed, in this work, the effects of different acceptor groups in D-π-A dyes (A1-A6) before and after binding to TiO2 cluster on the electron injection to the surface ability were studied. The electronic structures, Density of States (DOS), Natural Bond Orbital (NBO) analysis, UV–vis spectra, and some key parameters associated with the short-circuit current density (Jsc) and the open-circuit photovoltage (Voc), such as light-harvesting efficiency (LHE), and electron injection driving force (ΔGinject), were computed to predict the most suitable dyes for DSSC application. Our calculations reveal that, compared with dye A1, dyes A4 and A6 improve the performance potentially due to their higher absorptivity as well as the strong adsorption stability of the corresponding acceptors.
科研通智能强力驱动
Strongly Powered by AbleSci AI