Prediction Model for the Differential Diagnosis of Kawasaki Disease and Acute Cervical Lymphadenitis in Patients Initially Presenting with Fever and Cervical Lymphadenitis

医学 川崎病 尤登J统计 颈淋巴结病 淋巴结 接收机工作特性 阶段(地层学) 皮肤粘膜淋巴结综合征 放射科 内科学 疾病 生物 古生物学 动脉
作者
Jae Min Kim,Jihye Kim
出处
期刊:The Journal of Pediatrics [Elsevier]
卷期号:225: 30-36.e2 被引量:4
标识
DOI:10.1016/j.jpeds.2020.05.031
摘要

Objectives To distinguish early-stage lymph node first presentation of Kawasaki disease from acute cervical lymphadenitis, we developed an algorithm using sequential laboratory marker levels and radiologic findings. Study design Data were obtained from pediatric inpatients initially presenting with fever and cervical lymphadenopathy. Discriminative factors for the differential diagnosis of acute cervical lymphadenitis and lymph node first presentation of Kawasaki disease were identified from intergroup comparison or univariate logistic regression analysis. A model for differentiating between lymph node first presentation of Kawasaki disease and acute cervical lymphadenitis was constructed using decision-tree analysis. Results Patients were divided into 2 cohorts: training (206 patients) and validation (103 patients) cohorts. A decision-tree model developed from the data of the training cohort included 3 determinants: neck computed tomography- or ultrasonography-defined abscess, percentage change in C-reactive protein level, and percentage change in neutrophil count. The prediction power of our decision-tree model for the validation cohort was superior to that of previously known laboratory markers (sensitivity of 89.5%, specificity of 88.9%, positive predictive value of 95.8%, negative predictive value of 75.0%, overall accuracy of 89.3%, and a Youden index of 0.784). Conclusions A decision-tree model could differentiate lymph node first presentation of Kawasaki disease from acute cervical lymphadenitis with an increased accuracy. External validation based on multicenter data is needed before clinical application. To distinguish early-stage lymph node first presentation of Kawasaki disease from acute cervical lymphadenitis, we developed an algorithm using sequential laboratory marker levels and radiologic findings. Data were obtained from pediatric inpatients initially presenting with fever and cervical lymphadenopathy. Discriminative factors for the differential diagnosis of acute cervical lymphadenitis and lymph node first presentation of Kawasaki disease were identified from intergroup comparison or univariate logistic regression analysis. A model for differentiating between lymph node first presentation of Kawasaki disease and acute cervical lymphadenitis was constructed using decision-tree analysis. Patients were divided into 2 cohorts: training (206 patients) and validation (103 patients) cohorts. A decision-tree model developed from the data of the training cohort included 3 determinants: neck computed tomography- or ultrasonography-defined abscess, percentage change in C-reactive protein level, and percentage change in neutrophil count. The prediction power of our decision-tree model for the validation cohort was superior to that of previously known laboratory markers (sensitivity of 89.5%, specificity of 88.9%, positive predictive value of 95.8%, negative predictive value of 75.0%, overall accuracy of 89.3%, and a Youden index of 0.784). A decision-tree model could differentiate lymph node first presentation of Kawasaki disease from acute cervical lymphadenitis with an increased accuracy. External validation based on multicenter data is needed before clinical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
望望旺仔牛奶完成签到,获得积分10
刚刚
香蕉觅云应助luoshi采纳,获得10
1秒前
Zn应助gnr2000采纳,获得10
1秒前
二小完成签到,获得积分20
1秒前
拼搏思卉完成签到,获得积分10
1秒前
内向音响发布了新的文献求助10
1秒前
上官若男应助曼尼采纳,获得10
2秒前
飞羽发布了新的文献求助10
2秒前
科研通AI2S应助song99采纳,获得10
2秒前
momi完成签到 ,获得积分10
2秒前
哈哈哈呢完成签到 ,获得积分20
2秒前
LiShin发布了新的文献求助10
2秒前
phylicia发布了新的文献求助10
3秒前
萝卜完成签到,获得积分10
3秒前
3秒前
sjj完成签到,获得积分10
4秒前
只道寻常发布了新的文献求助10
4秒前
灵巧坤完成签到,获得积分20
5秒前
澹台灭明完成签到,获得积分10
5秒前
含蓄的鹤发布了新的文献求助10
5秒前
K. G.完成签到,获得积分0
5秒前
张云雷的大闸蟹完成签到,获得积分20
5秒前
5秒前
6秒前
7秒前
化学狗完成签到,获得积分10
7秒前
yud完成签到 ,获得积分10
7秒前
8秒前
拼搏思卉发布了新的文献求助10
8秒前
9秒前
雨碎寒江完成签到,获得积分10
9秒前
10秒前
会飞的木头完成签到,获得积分10
10秒前
雪白涵山发布了新的文献求助20
10秒前
shouyu29应助MADKAI采纳,获得10
10秒前
Seiswan发布了新的文献求助10
10秒前
小小菜鸟完成签到,获得积分10
11秒前
11秒前
西西弗斯完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762