Prediction Model for the Differential Diagnosis of Kawasaki Disease and Acute Cervical Lymphadenitis in Patients Initially Presenting with Fever and Cervical Lymphadenitis

医学 川崎病 尤登J统计 颈淋巴结病 淋巴结 接收机工作特性 阶段(地层学) 皮肤粘膜淋巴结综合征 放射科 内科学 疾病 古生物学 动脉 生物
作者
Jae Min Kim,Jihye Kim
出处
期刊:The Journal of Pediatrics [Elsevier BV]
卷期号:225: 30-36.e2 被引量:4
标识
DOI:10.1016/j.jpeds.2020.05.031
摘要

Objectives To distinguish early-stage lymph node first presentation of Kawasaki disease from acute cervical lymphadenitis, we developed an algorithm using sequential laboratory marker levels and radiologic findings. Study design Data were obtained from pediatric inpatients initially presenting with fever and cervical lymphadenopathy. Discriminative factors for the differential diagnosis of acute cervical lymphadenitis and lymph node first presentation of Kawasaki disease were identified from intergroup comparison or univariate logistic regression analysis. A model for differentiating between lymph node first presentation of Kawasaki disease and acute cervical lymphadenitis was constructed using decision-tree analysis. Results Patients were divided into 2 cohorts: training (206 patients) and validation (103 patients) cohorts. A decision-tree model developed from the data of the training cohort included 3 determinants: neck computed tomography- or ultrasonography-defined abscess, percentage change in C-reactive protein level, and percentage change in neutrophil count. The prediction power of our decision-tree model for the validation cohort was superior to that of previously known laboratory markers (sensitivity of 89.5%, specificity of 88.9%, positive predictive value of 95.8%, negative predictive value of 75.0%, overall accuracy of 89.3%, and a Youden index of 0.784). Conclusions A decision-tree model could differentiate lymph node first presentation of Kawasaki disease from acute cervical lymphadenitis with an increased accuracy. External validation based on multicenter data is needed before clinical application. To distinguish early-stage lymph node first presentation of Kawasaki disease from acute cervical lymphadenitis, we developed an algorithm using sequential laboratory marker levels and radiologic findings. Data were obtained from pediatric inpatients initially presenting with fever and cervical lymphadenopathy. Discriminative factors for the differential diagnosis of acute cervical lymphadenitis and lymph node first presentation of Kawasaki disease were identified from intergroup comparison or univariate logistic regression analysis. A model for differentiating between lymph node first presentation of Kawasaki disease and acute cervical lymphadenitis was constructed using decision-tree analysis. Patients were divided into 2 cohorts: training (206 patients) and validation (103 patients) cohorts. A decision-tree model developed from the data of the training cohort included 3 determinants: neck computed tomography- or ultrasonography-defined abscess, percentage change in C-reactive protein level, and percentage change in neutrophil count. The prediction power of our decision-tree model for the validation cohort was superior to that of previously known laboratory markers (sensitivity of 89.5%, specificity of 88.9%, positive predictive value of 95.8%, negative predictive value of 75.0%, overall accuracy of 89.3%, and a Youden index of 0.784). A decision-tree model could differentiate lymph node first presentation of Kawasaki disease from acute cervical lymphadenitis with an increased accuracy. External validation based on multicenter data is needed before clinical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
李健应助周裕川采纳,获得10
2秒前
哈哈哈发布了新的文献求助10
2秒前
2秒前
2秒前
mzbgnk发布了新的文献求助10
3秒前
超越好帅完成签到,获得积分20
3秒前
Meidina完成签到,获得积分10
3秒前
机智幻嫣发布了新的文献求助20
4秒前
嗨翻的冰激凌完成签到 ,获得积分10
4秒前
5秒前
5秒前
温荆发布了新的文献求助10
5秒前
英姑应助flyingF采纳,获得10
6秒前
任新元发布了新的文献求助10
7秒前
一梦发布了新的文献求助10
7秒前
7秒前
耀阳发布了新的文献求助10
9秒前
呵呵发布了新的文献求助10
10秒前
阿喔完成签到,获得积分10
10秒前
KAKA完成签到,获得积分10
10秒前
Versa完成签到,获得积分10
10秒前
淡然依凝发布了新的文献求助10
11秒前
AiHaraNeko完成签到,获得积分10
11秒前
轻松的小白菜完成签到,获得积分10
11秒前
Arthur完成签到 ,获得积分10
11秒前
11秒前
无私菲鹰发布了新的文献求助30
12秒前
lingo发布了新的文献求助10
13秒前
ghost完成签到,获得积分10
14秒前
14秒前
温荆完成签到,获得积分10
15秒前
Asdaf完成签到,获得积分10
16秒前
任新元完成签到,获得积分10
16秒前
周裕川发布了新的文献求助10
17秒前
搜集达人应助一梦采纳,获得10
17秒前
ghost发布了新的文献求助10
18秒前
古芍昂发布了新的文献求助10
18秒前
zihanwang应助迅速煎蛋采纳,获得10
19秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998688
求助须知:如何正确求助?哪些是违规求助? 3538149
关于积分的说明 11273517
捐赠科研通 3277099
什么是DOI,文献DOI怎么找? 1807405
邀请新用户注册赠送积分活动 883855
科研通“疑难数据库(出版商)”最低求助积分说明 810070