Deep Learning to Obtain Simultaneous Image and Segmentation Outputs From a Single Input of Raw Ultrasound Channel Data

计算机科学 成像体模 波束赋形 人工智能 分割 频道(广播) 帧速率 深度学习 光学(聚焦) 计算机视觉 三维超声 图像质量 消声室 模式识别(心理学) 超声波 图像(数学) 声学 电信 物理 光学
作者
Arun Asokan Nair,Kendra Washington,Trac D. Tran,Austin Reiter,Muyinatu A. Lediju Bell
出处
期刊:IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control [Institute of Electrical and Electronics Engineers]
卷期号:67 (12): 2493-2509 被引量:84
标识
DOI:10.1109/tuffc.2020.2993779
摘要

Single plane wave transmissions are promising for automated imaging tasks requiring high ultrasound frame rates over an extended field of view. However, a single plane wave insonification typically produces suboptimal image quality. To address this limitation, we are exploring the use of deep neural networks (DNNs) as an alternative to delay-and-sum (DAS) beamforming. The objectives of this work are to obtain information directly from raw channel data and to simultaneously generate both a segmentation map for automated ultrasound tasks and a corresponding ultrasound B-mode image for interpretable supervision of the automation. We focus on visualizing and segmenting anechoic targets surrounded by tissue and ignoring or deemphasizing less important surrounding structures. DNNs trained with Field II simulations were tested with simulated, experimental phantom, and in vivo data sets that were not included during training. With unfocused input channel data (i.e., prior to the application of receive time delays), simulated, experimental phantom, and in vivo test data sets achieved mean ± standard deviation Dice similarity coefficients of 0.92 ± 0.13, 0.92 ± 0.03, and 0.77 ± 0.07, respectively, and generalized contrast-to-noise ratios (gCNRs) of 0.95 ± 0.08, 0.93 ± 0.08, and 0.75 ± 0.14, respectively. With subaperture beamformed channel data and a modification to the input layer of the DNN architecture to accept these data, the fidelity of image reconstruction increased (e.g., mean gCNR of multiple acquisitions of two in vivo breast cysts ranged 0.89-0.96), but DNN display frame rates were reduced from 395 to 287 Hz. Overall, the DNNs successfully translated feature representations learned from simulated data to phantom and in vivo data, which is promising for this novel approach to simultaneous ultrasound image formation and segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
alexlpb完成签到,获得积分10
2秒前
电致阿光完成签到,获得积分10
2秒前
这不得行完成签到 ,获得积分10
3秒前
正直的香薇完成签到,获得积分10
3秒前
summuryi完成签到,获得积分10
4秒前
雨淋沐风发布了新的文献求助10
5秒前
诚心毛豆完成签到,获得积分10
5秒前
阔达听寒完成签到,获得积分10
5秒前
杳鸢应助HuLL采纳,获得30
5秒前
hao发布了新的文献求助10
6秒前
人文完成签到 ,获得积分10
6秒前
水木年华完成签到,获得积分10
6秒前
ruby完成签到,获得积分10
6秒前
Cker发布了新的文献求助10
6秒前
沉静的红酒完成签到,获得积分10
6秒前
宋芝恬完成签到,获得积分10
7秒前
Lily完成签到,获得积分10
7秒前
John发布了新的文献求助10
8秒前
8秒前
宁为树完成签到,获得积分10
8秒前
长安某完成签到,获得积分10
9秒前
1111chen完成签到 ,获得积分10
10秒前
zhiyu完成签到,获得积分10
10秒前
一块小白糖完成签到,获得积分10
10秒前
11秒前
11秒前
雨淋沐风完成签到,获得积分10
11秒前
无花果应助nyfz2002采纳,获得10
12秒前
开放念柏发布了新的文献求助10
12秒前
双shuang完成签到,获得积分10
13秒前
慕青应助粥仙僧采纳,获得10
14秒前
机密塔完成签到,获得积分10
14秒前
丹妮完成签到,获得积分10
15秒前
Cker完成签到,获得积分10
15秒前
licheng完成签到,获得积分10
16秒前
科研通AI2S应助jianjiao采纳,获得10
18秒前
19秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3413470
求助须知:如何正确求助?哪些是违规求助? 3015836
关于积分的说明 8872106
捐赠科研通 2703604
什么是DOI,文献DOI怎么找? 1482370
科研通“疑难数据库(出版商)”最低求助积分说明 685266
邀请新用户注册赠送积分活动 679994