材料科学
复合材料
反射损耗
介电损耗
介电常数
复合数
多孔性
吸收(声学)
电介质
光电子学
作者
Hongsheng Liang,Hui Xing,Ming Qin,Hongjing Wu
标识
DOI:10.1016/j.compositesa.2020.105959
摘要
In recent years, the development of an electromagnetic wave (EMW) absorbing material with low cost, wide bandwidth and strong absorption strength has been widely explored. In this study, [email protected]3O4 was used as the precursor (S1), and two methods are explored to ameliorate the ultra-high complex permittivity. The method of adding phenolic resin has achieved ideal results, and its bamboo-like [email protected]3O4@phenolic resin (PR) (S5) has excellent property. In addition, the electromagnetic properties can be improved by calcining the precursor at 700 °C in a tubular furnace protected by Ar gas, and the obtained honeycomb-like porous [email protected]3O4@FeO (S4) composite has superior EMW absorption performance. The excellent EMW absorption performance comes from its unique porous structure. The sample also has a dual loss mechanism of dielectric and magnetic loss. Among them, conduction loss, interfacial polarization, Debye relaxation, hysteresis loss, natural ferromagnetic resonance and exchange resonance play an important role in the process of EMW absorption. It exhibits an effective absorption bandwidth (EAB) of 6.1 GHz with a thin thickness of 1.9 mm. Noting that, by adjusting the thickness (1–5 mm), reflection loss (RL) lower than −10 dB can be achieved in the range of 4–18 GHz, which covers the entire C, X and Ku bands. In this study, we not only successfully prepared honeycomb-like porous [email protected]3O4@FeO and bamboo-like [email protected]3O4@PR, but also proposed two simple methods to solve the excessively high complex permittivity of carbon materials. This has important reference value for the subsequent research of EMW absorbing materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI