清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Data-driven three-dimensional super-resolution imaging of a turbulent jet flame using a generative adversarial network

计算机科学 湍流 插值(计算机图形学) 人工智能 图像分辨率 生成对抗网络 算法 鉴别器 喷射(流体) 分辨率(逻辑) 物理 深度学习 图像(数学) 机械 电信 探测器
作者
Wenjiang Xu,Weiyi Luo,Yu Wang,Yancheng You
出处
期刊:Applied Optics [The Optical Society]
卷期号:59 (19): 5729-5729 被引量:20
标识
DOI:10.1364/ao.392803
摘要

Three-dimensional (3D) computed tomography (CT) is becoming a well-established tool for turbulent combustion diagnostics. However, the 3D CT technique suffers from contradictory demands of spatial resolution and domain size. This work therefore reports a data-driven 3D super-resolution approach to enhance the spatial resolution by two times along each spatial direction. The approach, named 3D super-resolution generative adversarial network (3D-SR-GAN), builds a generator and a discriminator network to learn the topographic information and infer high-resolution 3D turbulent flame structure with a given low-resolution counterpart. This work uses numerically simulated 3D turbulent jet flame structures as training data to update model parameters of the GAN network. Extensive performance evaluations are then conducted to show the superiority of the proposed 3D-SR-GAN network, compared with other direct interpolation methods. The results show that a convincing super-resolution (SR) operation with the overall error of ∼4% and the peak signal-to-noise ratio of 37 dB can be reached with an upscaling factor of 2, representing an eight times enhancement of the total voxel number. Moreover, the trained network can predict the SR structure of the jet flame with a different Reynolds number without retraining the network parameters.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
震动的机器猫完成签到,获得积分10
33秒前
38秒前
55秒前
1分钟前
壮观以松完成签到,获得积分20
1分钟前
music007完成签到,获得积分10
1分钟前
jyy应助科研通管家采纳,获得10
2分钟前
fareless完成签到 ,获得积分10
2分钟前
HLT完成签到 ,获得积分10
3分钟前
嬗变的天秤完成签到,获得积分10
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
科研通AI2S应助liudy采纳,获得10
7分钟前
7分钟前
QiaoHL完成签到 ,获得积分10
7分钟前
7分钟前
7分钟前
8分钟前
8分钟前
8分钟前
十二完成签到 ,获得积分10
8分钟前
8分钟前
Airi发布了新的文献求助10
9分钟前
9分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139610
求助须知:如何正确求助?哪些是违规求助? 2790479
关于积分的说明 7795394
捐赠科研通 2446958
什么是DOI,文献DOI怎么找? 1301526
科研通“疑难数据库(出版商)”最低求助积分说明 626259
版权声明 601176