亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Data-driven three-dimensional super-resolution imaging of a turbulent jet flame using a generative adversarial network

计算机科学 湍流 插值(计算机图形学) 人工智能 图像分辨率 生成对抗网络 算法 鉴别器 噪音(视频) 喷射(流体) 分辨率(逻辑) 体素 火焰结构 光学 计算机视觉 燃烧室 燃烧 物理 深度学习 图像(数学) 机械 电信 探测器 有机化学 化学
作者
Wenjiang Xu,Weiyi Luo,Yu Wang,Yancheng You
出处
期刊:Applied Optics [Optica Publishing Group]
卷期号:59 (19): 5729-5729 被引量:22
标识
DOI:10.1364/ao.392803
摘要

Three-dimensional (3D) computed tomography (CT) is becoming a well-established tool for turbulent combustion diagnostics. However, the 3D CT technique suffers from contradictory demands of spatial resolution and domain size. This work therefore reports a data-driven 3D super-resolution approach to enhance the spatial resolution by two times along each spatial direction. The approach, named 3D super-resolution generative adversarial network (3D-SR-GAN), builds a generator and a discriminator network to learn the topographic information and infer high-resolution 3D turbulent flame structure with a given low-resolution counterpart. This work uses numerically simulated 3D turbulent jet flame structures as training data to update model parameters of the GAN network. Extensive performance evaluations are then conducted to show the superiority of the proposed 3D-SR-GAN network, compared with other direct interpolation methods. The results show that a convincing super-resolution (SR) operation with the overall error of ∼4% and the peak signal-to-noise ratio of 37 dB can be reached with an upscaling factor of 2, representing an eight times enhancement of the total voxel number. Moreover, the trained network can predict the SR structure of the jet flame with a different Reynolds number without retraining the network parameters.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
28秒前
52秒前
Sym发布了新的文献求助10
53秒前
立行完成签到 ,获得积分10
1分钟前
安静书雁完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
古铜完成签到 ,获得积分10
3分钟前
契咯完成签到,获得积分10
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
5分钟前
5分钟前
苏楠完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
老迟到的友桃完成签到 ,获得积分10
6分钟前
ceeray23发布了新的文献求助20
6分钟前
tingalan应助科研通管家采纳,获得10
6分钟前
bookgg完成签到 ,获得积分10
6分钟前
6分钟前
ZgnomeshghT发布了新的文献求助10
6分钟前
善学以致用应助ZgnomeshghT采纳,获得10
6分钟前
6分钟前
6分钟前
7分钟前
7分钟前
7分钟前
7分钟前
孤独剑完成签到 ,获得积分10
7分钟前
科研通AI2S应助ceeray23采纳,获得20
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Rapid synthesis of subnanoscale high-entropy alloys with ultrahigh durability 666
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4889480
求助须知:如何正确求助?哪些是违规求助? 4173477
关于积分的说明 12952093
捐赠科研通 3934926
什么是DOI,文献DOI怎么找? 2159102
邀请新用户注册赠送积分活动 1177454
关于科研通互助平台的介绍 1082281