Data-driven three-dimensional super-resolution imaging of a turbulent jet flame using a generative adversarial network

计算机科学 湍流 插值(计算机图形学) 人工智能 图像分辨率 生成对抗网络 算法 鉴别器 噪音(视频) 喷射(流体) 分辨率(逻辑) 体素 火焰结构 光学 计算机视觉 燃烧室 燃烧 物理 深度学习 图像(数学) 机械 电信 探测器 化学 有机化学
作者
Wenjiang Xu,Weiyi Luo,Yu Wang,Yancheng You
出处
期刊:Applied Optics [The Optical Society]
卷期号:59 (19): 5729-5729 被引量:22
标识
DOI:10.1364/ao.392803
摘要

Three-dimensional (3D) computed tomography (CT) is becoming a well-established tool for turbulent combustion diagnostics. However, the 3D CT technique suffers from contradictory demands of spatial resolution and domain size. This work therefore reports a data-driven 3D super-resolution approach to enhance the spatial resolution by two times along each spatial direction. The approach, named 3D super-resolution generative adversarial network (3D-SR-GAN), builds a generator and a discriminator network to learn the topographic information and infer high-resolution 3D turbulent flame structure with a given low-resolution counterpart. This work uses numerically simulated 3D turbulent jet flame structures as training data to update model parameters of the GAN network. Extensive performance evaluations are then conducted to show the superiority of the proposed 3D-SR-GAN network, compared with other direct interpolation methods. The results show that a convincing super-resolution (SR) operation with the overall error of ∼4% and the peak signal-to-noise ratio of 37 dB can be reached with an upscaling factor of 2, representing an eight times enhancement of the total voxel number. Moreover, the trained network can predict the SR structure of the jet flame with a different Reynolds number without retraining the network parameters.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助派123采纳,获得10
1秒前
完美世界应助一颗竹笋采纳,获得10
1秒前
FU完成签到,获得积分20
2秒前
3秒前
3秒前
韩浩男发布了新的文献求助10
3秒前
酷炫风华完成签到 ,获得积分10
5秒前
CodeCraft应助刻苦大门采纳,获得10
5秒前
6秒前
mumumu完成签到,获得积分10
6秒前
海岸完成签到,获得积分10
7秒前
一一发布了新的文献求助30
9秒前
绾绾完成签到 ,获得积分10
10秒前
007完成签到,获得积分10
11秒前
cindy完成签到 ,获得积分10
11秒前
wml应助Cyz采纳,获得10
12秒前
14秒前
斯文败类应助胡拉拉采纳,获得10
15秒前
Duke_ethan完成签到,获得积分10
16秒前
yang完成签到 ,获得积分10
16秒前
16秒前
16秒前
joe发布了新的文献求助10
17秒前
bkagyin应助xx采纳,获得10
17秒前
大个应助老干部采纳,获得10
18秒前
hymmm完成签到,获得积分10
18秒前
18秒前
20秒前
Return应助悄悄采纳,获得10
21秒前
梅雨季来信完成签到,获得积分10
21秒前
A晨发布了新的文献求助10
21秒前
yyyy发布了新的文献求助30
21秒前
22秒前
打打应助cwj采纳,获得10
22秒前
25秒前
QQ完成签到 ,获得积分10
26秒前
对掏大王发布了新的文献求助10
26秒前
赘婿应助走不开不快乐采纳,获得10
27秒前
外向蜡烛完成签到,获得积分10
27秒前
量子星尘发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679748
求助须知:如何正确求助?哪些是违规求助? 4993976
关于积分的说明 15170786
捐赠科研通 4839617
什么是DOI,文献DOI怎么找? 2593507
邀请新用户注册赠送积分活动 1546573
关于科研通互助平台的介绍 1504700