Portuguese word embeddings for the oil and gas industry: Development and evaluation

自然语言处理 计算机科学 人工智能 葡萄牙语 文字嵌入 词汇 领域(数学分析) 背景(考古学) 数据科学 嵌入 语言学 地理 数学分析 哲学 数学 考古
作者
Diogo da Silva Magalhães Gomes,Fábio Corrêa Cordeiro,Bernardo Scapini Consoli,Nikolas Lacerda Santos,Viviane Pereira Moreira,Renata Vieira,Sílvia María Wanderley Moraes,Alexandre G. Evsukoff
出处
期刊:Computers in Industry [Elsevier]
卷期号:124: 103347-103347 被引量:9
标识
DOI:10.1016/j.compind.2020.103347
摘要

Over the last decades, oil and gas companies have been facing a continuous increase of data collected in unstructured textual format. New disruptive technologies, such as natural language processing and machine learning, present an unprecedented opportunity to extract a wealth of valuable information within these documents. Word embedding models are one of the most fundamental units of natural language processing, enabling machine learning algorithms to achieve great generalization capabilities by providing meaningful representations of words, being able to capture syntactic and semantic features based on their context. However, the oil and gas domain-specific vocabulary represents a challenge to those algorithms, in which words may assume a completely different meaning from a common understanding. The Brazilian pre-salt is an important exploratory frontier for the oil and gas industry, with increasing attractiveness for international investments in exploration and production projects, and most of its documentation is in Portuguese. Moreover, Portuguese is one of the largest languages in terms of number of native speakers. Nonetheless, despite the importance of the petroleum sector of Portuguese speaking countries, specialized public corpora in this domain are scarce. This work proposes PetroVec, a representative set of word embedding models for the specific domain of oil and gas in Portuguese. We gathered an extensive collection of domain-related documents from leading institutions to build a large specialized oil and gas corpus in Portuguese, comprising more than 85 million tokens. To provide an intrinsic evaluation, assessing how well the models can encode domain semantics from the text, we created a semantic relatedness test set, comprising 1,500 word pairs labeled by selected experts in geoscience and petroleum engineering from both academia and industry. In addition, we performed an extrinsic quantitative evaluation on a downstream task of named entity recognition in geoscience, plus a set of qualitative analyses, and conducted a comparative evaluation against a public general-domain embedding model. The obtained results suggest that our domain-specific models outperformed the general model on their ability to represent specialized terminology. To the best of our knowledge, this is the first attempt to generate and evaluate word embedding models for the oil and gas domain in Portuguese. Finally, all the resources developed by this work are made available for public use, including the pre-trained specialized models, corpora, and validation datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhh完成签到,获得积分10
6秒前
7秒前
量子星尘发布了新的文献求助30
8秒前
强哥完成签到,获得积分10
9秒前
落水鎏情完成签到 ,获得积分10
12秒前
gece发布了新的文献求助10
13秒前
111完成签到 ,获得积分10
13秒前
丸子完成签到 ,获得积分10
16秒前
21秒前
sjwidjh完成签到 ,获得积分10
23秒前
梦游天吟留别完成签到,获得积分10
24秒前
摸摸就爆炸完成签到 ,获得积分10
24秒前
英俊的铭应助江十三采纳,获得10
25秒前
文静凝芙发布了新的文献求助10
26秒前
简单夏山完成签到 ,获得积分10
28秒前
务实土豆完成签到 ,获得积分10
29秒前
蝈蝈完成签到,获得积分10
30秒前
32秒前
兜兜完成签到 ,获得积分10
33秒前
浮游应助薄红采纳,获得10
34秒前
35秒前
量子星尘发布了新的文献求助10
36秒前
Sofia完成签到 ,获得积分0
37秒前
小young完成签到 ,获得积分10
37秒前
白华苍松完成签到,获得积分10
38秒前
ff关闭了ff文献求助
39秒前
DianaLee完成签到 ,获得积分10
39秒前
xiao完成签到 ,获得积分10
40秒前
40秒前
六初完成签到 ,获得积分10
40秒前
capvirgo完成签到 ,获得积分10
42秒前
44秒前
44秒前
44秒前
Dopamine完成签到 ,获得积分10
44秒前
45秒前
45秒前
45秒前
45秒前
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
扫描探针电化学 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5438835
求助须知:如何正确求助?哪些是违规求助? 4549997
关于积分的说明 14221301
捐赠科研通 4470952
什么是DOI,文献DOI怎么找? 2450090
邀请新用户注册赠送积分活动 1441058
关于科研通互助平台的介绍 1417610