清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Portuguese word embeddings for the oil and gas industry: Development and evaluation

自然语言处理 计算机科学 人工智能 葡萄牙语 文字嵌入 词汇 领域(数学分析) 背景(考古学) 数据科学 嵌入 语言学 地理 数学分析 哲学 数学 考古
作者
Diogo da Silva Magalhães Gomes,Fábio Corrêa Cordeiro,Bernardo Scapini Consoli,Nikolas Lacerda Santos,Viviane Pereira Moreira,Renata Vieira,Sílvia María Wanderley Moraes,Alexandre G. Evsukoff
出处
期刊:Computers in Industry [Elsevier BV]
卷期号:124: 103347-103347 被引量:9
标识
DOI:10.1016/j.compind.2020.103347
摘要

Over the last decades, oil and gas companies have been facing a continuous increase of data collected in unstructured textual format. New disruptive technologies, such as natural language processing and machine learning, present an unprecedented opportunity to extract a wealth of valuable information within these documents. Word embedding models are one of the most fundamental units of natural language processing, enabling machine learning algorithms to achieve great generalization capabilities by providing meaningful representations of words, being able to capture syntactic and semantic features based on their context. However, the oil and gas domain-specific vocabulary represents a challenge to those algorithms, in which words may assume a completely different meaning from a common understanding. The Brazilian pre-salt is an important exploratory frontier for the oil and gas industry, with increasing attractiveness for international investments in exploration and production projects, and most of its documentation is in Portuguese. Moreover, Portuguese is one of the largest languages in terms of number of native speakers. Nonetheless, despite the importance of the petroleum sector of Portuguese speaking countries, specialized public corpora in this domain are scarce. This work proposes PetroVec, a representative set of word embedding models for the specific domain of oil and gas in Portuguese. We gathered an extensive collection of domain-related documents from leading institutions to build a large specialized oil and gas corpus in Portuguese, comprising more than 85 million tokens. To provide an intrinsic evaluation, assessing how well the models can encode domain semantics from the text, we created a semantic relatedness test set, comprising 1,500 word pairs labeled by selected experts in geoscience and petroleum engineering from both academia and industry. In addition, we performed an extrinsic quantitative evaluation on a downstream task of named entity recognition in geoscience, plus a set of qualitative analyses, and conducted a comparative evaluation against a public general-domain embedding model. The obtained results suggest that our domain-specific models outperformed the general model on their ability to represent specialized terminology. To the best of our knowledge, this is the first attempt to generate and evaluate word embedding models for the oil and gas domain in Portuguese. Finally, all the resources developed by this work are made available for public use, including the pre-trained specialized models, corpora, and validation datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
11秒前
42秒前
45秒前
Krim完成签到 ,获得积分10
1分钟前
我有我风格完成签到 ,获得积分10
1分钟前
Akim应助George采纳,获得10
1分钟前
babalala完成签到,获得积分10
1分钟前
我是笨蛋完成签到 ,获得积分10
1分钟前
Virtual应助babalala采纳,获得20
1分钟前
大医仁心完成签到 ,获得积分10
1分钟前
1分钟前
呆呆的猕猴桃完成签到 ,获得积分10
1分钟前
TheaGao完成签到 ,获得积分0
1分钟前
George发布了新的文献求助10
1分钟前
踏实数据线完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
Benhnhk21完成签到,获得积分10
3分钟前
红枫没有微雨怜完成签到 ,获得积分10
3分钟前
慕青应助dcm采纳,获得10
4分钟前
瘦瘦的枫叶完成签到 ,获得积分10
5分钟前
wythu16完成签到,获得积分10
5分钟前
星辰大海应助Carlos_Soares采纳,获得10
5分钟前
老石完成签到 ,获得积分10
5分钟前
开心的瘦子完成签到,获得积分10
5分钟前
5分钟前
JAYZHANG完成签到,获得积分10
6分钟前
Carlos_Soares发布了新的文献求助10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
大个应助科研通管家采纳,获得10
6分钟前
大模型应助科研通管家采纳,获得20
6分钟前
Carlos_Soares完成签到,获得积分10
6分钟前
maher完成签到 ,获得积分10
6分钟前
6分钟前
asda发布了新的文献求助10
6分钟前
asda完成签到,获得积分20
6分钟前
呆鸥完成签到,获得积分10
6分钟前
ZYP应助OCDer采纳,获得80
7分钟前
8分钟前
林夕完成签到 ,获得积分10
8分钟前
量子星尘发布了新的文献求助10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4612350
求助须知:如何正确求助?哪些是违规求助? 4017599
关于积分的说明 12436515
捐赠科研通 3699718
什么是DOI,文献DOI怎么找? 2040286
邀请新用户注册赠送积分活动 1073108
科研通“疑难数据库(出版商)”最低求助积分说明 956819