亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Portuguese word embeddings for the oil and gas industry: Development and evaluation

自然语言处理 计算机科学 人工智能 葡萄牙语 文字嵌入 词汇 领域(数学分析) 背景(考古学) 数据科学 嵌入 语言学 地理 数学分析 哲学 数学 考古
作者
Diogo da Silva Magalhães Gomes,Fábio Corrêa Cordeiro,Bernardo Scapini Consoli,Nikolas Lacerda Santos,Viviane Pereira Moreira,Renata Vieira,Sílvia María Wanderley Moraes,Alexandre G. Evsukoff
出处
期刊:Computers in Industry [Elsevier BV]
卷期号:124: 103347-103347 被引量:9
标识
DOI:10.1016/j.compind.2020.103347
摘要

Over the last decades, oil and gas companies have been facing a continuous increase of data collected in unstructured textual format. New disruptive technologies, such as natural language processing and machine learning, present an unprecedented opportunity to extract a wealth of valuable information within these documents. Word embedding models are one of the most fundamental units of natural language processing, enabling machine learning algorithms to achieve great generalization capabilities by providing meaningful representations of words, being able to capture syntactic and semantic features based on their context. However, the oil and gas domain-specific vocabulary represents a challenge to those algorithms, in which words may assume a completely different meaning from a common understanding. The Brazilian pre-salt is an important exploratory frontier for the oil and gas industry, with increasing attractiveness for international investments in exploration and production projects, and most of its documentation is in Portuguese. Moreover, Portuguese is one of the largest languages in terms of number of native speakers. Nonetheless, despite the importance of the petroleum sector of Portuguese speaking countries, specialized public corpora in this domain are scarce. This work proposes PetroVec, a representative set of word embedding models for the specific domain of oil and gas in Portuguese. We gathered an extensive collection of domain-related documents from leading institutions to build a large specialized oil and gas corpus in Portuguese, comprising more than 85 million tokens. To provide an intrinsic evaluation, assessing how well the models can encode domain semantics from the text, we created a semantic relatedness test set, comprising 1,500 word pairs labeled by selected experts in geoscience and petroleum engineering from both academia and industry. In addition, we performed an extrinsic quantitative evaluation on a downstream task of named entity recognition in geoscience, plus a set of qualitative analyses, and conducted a comparative evaluation against a public general-domain embedding model. The obtained results suggest that our domain-specific models outperformed the general model on their ability to represent specialized terminology. To the best of our knowledge, this is the first attempt to generate and evaluate word embedding models for the oil and gas domain in Portuguese. Finally, all the resources developed by this work are made available for public use, including the pre-trained specialized models, corpora, and validation datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
19秒前
Akim应助平淡的洪纲采纳,获得10
19秒前
22秒前
24秒前
ster223发布了新的文献求助10
25秒前
33秒前
37秒前
婉莹完成签到 ,获得积分10
1分钟前
旺仔先生完成签到 ,获得积分10
1分钟前
1933644015完成签到,获得积分10
1分钟前
1分钟前
幸运小狗完成签到,获得积分20
1分钟前
1分钟前
cc完成签到,获得积分20
1分钟前
情怀应助尊敬的芷卉采纳,获得10
1分钟前
研友_X89o6n完成签到,获得积分10
1分钟前
aa121599完成签到,获得积分20
1分钟前
1分钟前
Owen应助科研通管家采纳,获得10
1分钟前
朴素绿蝶发布了新的文献求助10
2分钟前
痴痴的噜完成签到,获得积分10
2分钟前
江姜酱先生完成签到,获得积分10
2分钟前
搞科研的小李同学完成签到 ,获得积分10
2分钟前
科研通AI6应助朴素绿蝶采纳,获得10
2分钟前
可爱的函函应助hulahula采纳,获得10
2分钟前
fabius0351完成签到 ,获得积分10
2分钟前
李健应助阿米尔盼盼采纳,获得10
2分钟前
2分钟前
hulahula发布了新的文献求助10
2分钟前
2分钟前
2分钟前
长度2到发布了新的文献求助10
2分钟前
xuan发布了新的文献求助10
3分钟前
长度2到完成签到,获得积分10
3分钟前
3分钟前
xtheuv发布了新的文献求助10
3分钟前
Hello应助hulahula采纳,获得10
3分钟前
嘻嘻哈哈完成签到 ,获得积分10
3分钟前
3分钟前
科研通AI6应助xtheuv采纳,获得10
3分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5220819
求助须知:如何正确求助?哪些是违规求助? 4394077
关于积分的说明 13680135
捐赠科研通 4257061
什么是DOI,文献DOI怎么找? 2335959
邀请新用户注册赠送积分活动 1333553
关于科研通互助平台的介绍 1287992