Portuguese word embeddings for the oil and gas industry: Development and evaluation

自然语言处理 计算机科学 人工智能 葡萄牙语 文字嵌入 词汇 领域(数学分析) 背景(考古学) 数据科学 嵌入 语言学 地理 数学 数学分析 哲学 考古
作者
Diogo da Silva Magalhães Gomes,Fábio Corrêa Cordeiro,Bernardo Scapini Consoli,Nikolas Lacerda Santos,Viviane Pereira Moreira,Renata Vieira,Sílvia María Wanderley Moraes,Alexandre G. Evsukoff
出处
期刊:Computers in Industry [Elsevier]
卷期号:124: 103347-103347 被引量:9
标识
DOI:10.1016/j.compind.2020.103347
摘要

Over the last decades, oil and gas companies have been facing a continuous increase of data collected in unstructured textual format. New disruptive technologies, such as natural language processing and machine learning, present an unprecedented opportunity to extract a wealth of valuable information within these documents. Word embedding models are one of the most fundamental units of natural language processing, enabling machine learning algorithms to achieve great generalization capabilities by providing meaningful representations of words, being able to capture syntactic and semantic features based on their context. However, the oil and gas domain-specific vocabulary represents a challenge to those algorithms, in which words may assume a completely different meaning from a common understanding. The Brazilian pre-salt is an important exploratory frontier for the oil and gas industry, with increasing attractiveness for international investments in exploration and production projects, and most of its documentation is in Portuguese. Moreover, Portuguese is one of the largest languages in terms of number of native speakers. Nonetheless, despite the importance of the petroleum sector of Portuguese speaking countries, specialized public corpora in this domain are scarce. This work proposes PetroVec, a representative set of word embedding models for the specific domain of oil and gas in Portuguese. We gathered an extensive collection of domain-related documents from leading institutions to build a large specialized oil and gas corpus in Portuguese, comprising more than 85 million tokens. To provide an intrinsic evaluation, assessing how well the models can encode domain semantics from the text, we created a semantic relatedness test set, comprising 1,500 word pairs labeled by selected experts in geoscience and petroleum engineering from both academia and industry. In addition, we performed an extrinsic quantitative evaluation on a downstream task of named entity recognition in geoscience, plus a set of qualitative analyses, and conducted a comparative evaluation against a public general-domain embedding model. The obtained results suggest that our domain-specific models outperformed the general model on their ability to represent specialized terminology. To the best of our knowledge, this is the first attempt to generate and evaluate word embedding models for the oil and gas domain in Portuguese. Finally, all the resources developed by this work are made available for public use, including the pre-trained specialized models, corpora, and validation datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
HalloYa完成签到 ,获得积分10
1秒前
2秒前
闾丘曼安发布了新的文献求助10
2秒前
2秒前
危机发布了新的文献求助20
4秒前
希望天下0贩的0应助hyl采纳,获得10
4秒前
Hello应助潇洒馒头采纳,获得10
4秒前
内向士萧发布了新的文献求助10
4秒前
文静的幻嫣完成签到,获得积分20
4秒前
科研通AI2S应助认真子默采纳,获得10
4秒前
打打应助酸菜萌萌鱼采纳,获得10
5秒前
Lu发布了新的文献求助10
5秒前
勤恳的嚓茶完成签到,获得积分10
6秒前
刻苦沛芹发布了新的文献求助30
6秒前
7秒前
7秒前
7秒前
小马甲应助syh采纳,获得10
7秒前
科研小白发布了新的文献求助10
8秒前
9秒前
尔尔完成签到,获得积分20
9秒前
莫羽倾尘完成签到,获得积分10
9秒前
汉堡包应助哈哈采纳,获得10
9秒前
高挑的不凡完成签到,获得积分10
10秒前
酷酷问夏完成签到 ,获得积分10
10秒前
jjx1005完成签到 ,获得积分10
10秒前
李健的小迷弟应助雨霁采纳,获得20
10秒前
loong完成签到 ,获得积分10
11秒前
12秒前
欢喜完成签到 ,获得积分10
12秒前
飘逸晓山发布了新的文献求助10
12秒前
李雪完成签到,获得积分10
12秒前
小甜恬完成签到 ,获得积分10
12秒前
赘婿应助百草采纳,获得10
12秒前
12秒前
大面包发布了新的文献求助10
13秒前
13秒前
昕昕发布了新的文献求助10
13秒前
14秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147491
求助须知:如何正确求助?哪些是违规求助? 2798710
关于积分的说明 7830633
捐赠科研通 2455455
什么是DOI,文献DOI怎么找? 1306817
科研通“疑难数据库(出版商)”最低求助积分说明 627917
版权声明 601587