Portuguese word embeddings for the oil and gas industry: Development and evaluation

自然语言处理 计算机科学 人工智能 葡萄牙语 文字嵌入 词汇 领域(数学分析) 背景(考古学) 数据科学 嵌入 语言学 地理 数学分析 哲学 数学 考古
作者
Diogo da Silva Magalhães Gomes,Fábio Corrêa Cordeiro,Bernardo Scapini Consoli,Nikolas Lacerda Santos,Viviane Pereira Moreira,Renata Vieira,Sílvia María Wanderley Moraes,Alexandre G. Evsukoff
出处
期刊:Computers in Industry [Elsevier]
卷期号:124: 103347-103347 被引量:9
标识
DOI:10.1016/j.compind.2020.103347
摘要

Over the last decades, oil and gas companies have been facing a continuous increase of data collected in unstructured textual format. New disruptive technologies, such as natural language processing and machine learning, present an unprecedented opportunity to extract a wealth of valuable information within these documents. Word embedding models are one of the most fundamental units of natural language processing, enabling machine learning algorithms to achieve great generalization capabilities by providing meaningful representations of words, being able to capture syntactic and semantic features based on their context. However, the oil and gas domain-specific vocabulary represents a challenge to those algorithms, in which words may assume a completely different meaning from a common understanding. The Brazilian pre-salt is an important exploratory frontier for the oil and gas industry, with increasing attractiveness for international investments in exploration and production projects, and most of its documentation is in Portuguese. Moreover, Portuguese is one of the largest languages in terms of number of native speakers. Nonetheless, despite the importance of the petroleum sector of Portuguese speaking countries, specialized public corpora in this domain are scarce. This work proposes PetroVec, a representative set of word embedding models for the specific domain of oil and gas in Portuguese. We gathered an extensive collection of domain-related documents from leading institutions to build a large specialized oil and gas corpus in Portuguese, comprising more than 85 million tokens. To provide an intrinsic evaluation, assessing how well the models can encode domain semantics from the text, we created a semantic relatedness test set, comprising 1,500 word pairs labeled by selected experts in geoscience and petroleum engineering from both academia and industry. In addition, we performed an extrinsic quantitative evaluation on a downstream task of named entity recognition in geoscience, plus a set of qualitative analyses, and conducted a comparative evaluation against a public general-domain embedding model. The obtained results suggest that our domain-specific models outperformed the general model on their ability to represent specialized terminology. To the best of our knowledge, this is the first attempt to generate and evaluate word embedding models for the oil and gas domain in Portuguese. Finally, all the resources developed by this work are made available for public use, including the pre-trained specialized models, corpora, and validation datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
刚刚
刚刚
zdesfsfa完成签到,获得积分10
1秒前
搜集达人应助lily采纳,获得10
1秒前
清晨完成签到 ,获得积分10
1秒前
抵澳报了完成签到,获得积分0
1秒前
冰山一脚尖完成签到,获得积分10
2秒前
xiyueQAQ关注了科研通微信公众号
2秒前
jason0023完成签到,获得积分10
2秒前
AJIJDKDN完成签到,获得积分10
2秒前
2秒前
2秒前
敬之发布了新的文献求助10
3秒前
标致幻竹完成签到,获得积分10
3秒前
勤奋帅帅完成签到,获得积分10
4秒前
苏silence发布了新的文献求助80
4秒前
4秒前
大饼完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
5秒前
rinki完成签到,获得积分10
5秒前
6秒前
6秒前
冷茗完成签到,获得积分10
6秒前
7秒前
张垚发布了新的文献求助10
7秒前
梅耀寰发布了新的文献求助10
7秒前
靓丽幻梅完成签到,获得积分10
7秒前
研友_VZG7GZ应助nn采纳,获得10
7秒前
沉默南露发布了新的文献求助10
7秒前
郭露露完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
8秒前
9秒前
孟祥飞完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017