Portuguese word embeddings for the oil and gas industry: Development and evaluation

自然语言处理 计算机科学 人工智能 葡萄牙语 文字嵌入 词汇 领域(数学分析) 背景(考古学) 数据科学 嵌入 语言学 地理 数学 数学分析 哲学 考古
作者
Diogo da Silva Magalhães Gomes,Fábio Corrêa Cordeiro,Bernardo Scapini Consoli,Nikolas Lacerda Santos,Viviane Pereira Moreira,Renata Vieira,Sílvia María Wanderley Moraes,Alexandre G. Evsukoff
出处
期刊:Computers in Industry [Elsevier BV]
卷期号:124: 103347-103347 被引量:9
标识
DOI:10.1016/j.compind.2020.103347
摘要

Over the last decades, oil and gas companies have been facing a continuous increase of data collected in unstructured textual format. New disruptive technologies, such as natural language processing and machine learning, present an unprecedented opportunity to extract a wealth of valuable information within these documents. Word embedding models are one of the most fundamental units of natural language processing, enabling machine learning algorithms to achieve great generalization capabilities by providing meaningful representations of words, being able to capture syntactic and semantic features based on their context. However, the oil and gas domain-specific vocabulary represents a challenge to those algorithms, in which words may assume a completely different meaning from a common understanding. The Brazilian pre-salt is an important exploratory frontier for the oil and gas industry, with increasing attractiveness for international investments in exploration and production projects, and most of its documentation is in Portuguese. Moreover, Portuguese is one of the largest languages in terms of number of native speakers. Nonetheless, despite the importance of the petroleum sector of Portuguese speaking countries, specialized public corpora in this domain are scarce. This work proposes PetroVec, a representative set of word embedding models for the specific domain of oil and gas in Portuguese. We gathered an extensive collection of domain-related documents from leading institutions to build a large specialized oil and gas corpus in Portuguese, comprising more than 85 million tokens. To provide an intrinsic evaluation, assessing how well the models can encode domain semantics from the text, we created a semantic relatedness test set, comprising 1,500 word pairs labeled by selected experts in geoscience and petroleum engineering from both academia and industry. In addition, we performed an extrinsic quantitative evaluation on a downstream task of named entity recognition in geoscience, plus a set of qualitative analyses, and conducted a comparative evaluation against a public general-domain embedding model. The obtained results suggest that our domain-specific models outperformed the general model on their ability to represent specialized terminology. To the best of our knowledge, this is the first attempt to generate and evaluate word embedding models for the oil and gas domain in Portuguese. Finally, all the resources developed by this work are made available for public use, including the pre-trained specialized models, corpora, and validation datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Min完成签到,获得积分10
刚刚
薛人英完成签到,获得积分10
1秒前
Lucas应助景行行止采纳,获得10
2秒前
深情安青应助RON采纳,获得10
2秒前
2秒前
快快毕业完成签到 ,获得积分10
2秒前
传奇3应助zc98采纳,获得10
2秒前
你今天学了多少完成签到 ,获得积分10
2秒前
赵世鹏完成签到,获得积分10
3秒前
新起点发布了新的文献求助10
4秒前
4秒前
4秒前
123123发布了新的文献求助10
4秒前
怕孤单的若颜完成签到,获得积分10
4秒前
飞快的奇异果完成签到 ,获得积分10
4秒前
lean发布了新的文献求助10
5秒前
科目三应助zhengmin采纳,获得10
5秒前
Flo发布了新的文献求助10
5秒前
陈思完成签到,获得积分10
5秒前
mayamaya完成签到,获得积分10
7秒前
Xiaoxin_Ju完成签到,获得积分10
7秒前
刘豆完成签到,获得积分10
8秒前
隋承轩发布了新的文献求助10
8秒前
玖梦恨别离完成签到 ,获得积分10
8秒前
女娇娥完成签到,获得积分10
8秒前
肖守玉完成签到,获得积分10
8秒前
10秒前
二二完成签到 ,获得积分10
10秒前
feixue完成签到,获得积分10
10秒前
蜜桃四季春完成签到,获得积分10
10秒前
Potato完成签到,获得积分10
11秒前
Flo完成签到,获得积分10
11秒前
孔乙己完成签到,获得积分10
11秒前
黎黎完成签到,获得积分10
12秒前
Burke完成签到 ,获得积分10
12秒前
将就小白完成签到 ,获得积分10
13秒前
cxzhao完成签到,获得积分10
13秒前
Elec完成签到,获得积分10
14秒前
lean完成签到,获得积分10
15秒前
LLL完成签到,获得积分10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950051
求助须知:如何正确求助?哪些是违规求助? 3495384
关于积分的说明 11076831
捐赠科研通 3225937
什么是DOI,文献DOI怎么找? 1783346
邀请新用户注册赠送积分活动 867640
科研通“疑难数据库(出版商)”最低求助积分说明 800855