已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Pseudo Maximum likelihood approach to position estimation in dynamic multipath environments

多径传播 算法 计算机科学 延迟扩散 非视线传播 窄带 稳健性(进化) 波束赋形 职位(财务) 带宽(计算) 频道(广播) 数学 电信 无线 基因 经济 化学 生物化学 财务
作者
Alessio Fascista,Angelo Coluccia,Giuseppe Ricci
出处
期刊:Signal Processing [Elsevier BV]
卷期号:181: 107907-107907 被引量:33
标识
DOI:10.1016/j.sigpro.2020.107907
摘要

The problem of maximum likelihood (ML) direct position estimation (DPE) of a multi-antenna receiver for the case of dynamic multipath environments is addressed, exploiting narrowband broadcast radio signals, without assuming special conditions such as mmWave massive MIMO, OFDM, or large bandwidth. To overcome the dramatic complexity of the plain ML formulation, which involves a large number of unknown parameters (proportional to the number of paths times the number of observations), a reduced-complexity algorithm based on a pseudo ML approach is proposed. Unlike classical two-step approaches, where angles of arrival (AOAs) are first estimated and then used in a second step to (geometrically) estimate the unknown position, the proposed algorithm also exploits the information brought by non line-of-sight (NLOS) paths: specifically, the whole multipath parameters are estimated via spatially-smoothed MUSIC and adaptive beamforming, to reconstruct the projection matrices appearing in the ML cost function, which is ultimately maximized with respect to the unknown position (sticking to the DPE approach). In addition, a novel AOA-based mechanism that conditionally associates the LOS over time for a given trial position is designed; in doing so, a performance gain is obtained by the coherent integration of multiple observations from different channel realizations. The performance assessment shows that the proposed algorithm is very effective in (even severe) multipath conditions, outperforming natural competitors also when the number of antennas and samples is kept at the theoretical minimum, and exhibiting robustness to several types of mismatch.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研废柴发布了新的文献求助10
1秒前
漂亮香芦完成签到,获得积分10
2秒前
英俊的铭应助隐形盼海采纳,获得10
7秒前
7秒前
英姑应助蓝莓小蛋糕采纳,获得10
8秒前
SONGREN发布了新的文献求助10
11秒前
qiandi完成签到 ,获得积分10
12秒前
科目三应助科研通管家采纳,获得30
13秒前
Orange应助科研通管家采纳,获得10
13秒前
斯文败类应助科研通管家采纳,获得10
13秒前
深情安青应助科研通管家采纳,获得10
14秒前
慕青应助科研通管家采纳,获得10
14秒前
汉堡包应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
领导范儿应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
14秒前
华仔应助小贤采纳,获得10
18秒前
Ty完成签到,获得积分10
20秒前
21秒前
理塘大学士完成签到,获得积分10
22秒前
24秒前
24秒前
米酒汤圆发布了新的文献求助30
25秒前
深情幻巧完成签到,获得积分10
25秒前
光亮秋白完成签到,获得积分10
26秒前
星空棒棒糖完成签到 ,获得积分10
28秒前
ding应助SONGREN采纳,获得10
29秒前
29秒前
漂亮香芦发布了新的文献求助10
29秒前
chris发布了新的文献求助20
31秒前
31秒前
luoshi94完成签到,获得积分10
31秒前
34秒前
35秒前
ZZQ发布了新的文献求助10
36秒前
妤懿完成签到 ,获得积分10
37秒前
刘书洋发布了新的文献求助10
38秒前
FashionBoy应助开心丸子采纳,获得10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252840
求助须知:如何正确求助?哪些是违规求助? 4416384
关于积分的说明 13749582
捐赠科研通 4288491
什么是DOI,文献DOI怎么找? 2352947
邀请新用户注册赠送积分活动 1349756
关于科研通互助平台的介绍 1309339