已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Pseudo Maximum likelihood approach to position estimation in dynamic multipath environments

多径传播 算法 计算机科学 延迟扩散 非视线传播 窄带 稳健性(进化) 波束赋形 职位(财务) 带宽(计算) 频道(广播) 数学 电信 无线 基因 经济 化学 生物化学 财务
作者
Alessio Fascista,Angelo Coluccia,Giuseppe Ricci
出处
期刊:Signal Processing [Elsevier]
卷期号:181: 107907-107907 被引量:33
标识
DOI:10.1016/j.sigpro.2020.107907
摘要

The problem of maximum likelihood (ML) direct position estimation (DPE) of a multi-antenna receiver for the case of dynamic multipath environments is addressed, exploiting narrowband broadcast radio signals, without assuming special conditions such as mmWave massive MIMO, OFDM, or large bandwidth. To overcome the dramatic complexity of the plain ML formulation, which involves a large number of unknown parameters (proportional to the number of paths times the number of observations), a reduced-complexity algorithm based on a pseudo ML approach is proposed. Unlike classical two-step approaches, where angles of arrival (AOAs) are first estimated and then used in a second step to (geometrically) estimate the unknown position, the proposed algorithm also exploits the information brought by non line-of-sight (NLOS) paths: specifically, the whole multipath parameters are estimated via spatially-smoothed MUSIC and adaptive beamforming, to reconstruct the projection matrices appearing in the ML cost function, which is ultimately maximized with respect to the unknown position (sticking to the DPE approach). In addition, a novel AOA-based mechanism that conditionally associates the LOS over time for a given trial position is designed; in doing so, a performance gain is obtained by the coherent integration of multiple observations from different channel realizations. The performance assessment shows that the proposed algorithm is very effective in (even severe) multipath conditions, outperforming natural competitors also when the number of antennas and samples is kept at the theoretical minimum, and exhibiting robustness to several types of mismatch.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无极微光应助123采纳,获得20
刚刚
yq完成签到,获得积分10
刚刚
2秒前
半。。完成签到,获得积分20
3秒前
枫泾完成签到,获得积分10
3秒前
半。。发布了新的文献求助10
6秒前
锅包又完成签到 ,获得积分10
6秒前
6秒前
7秒前
lanxinyue发布了新的文献求助10
7秒前
科研通AI6应助不朽采纳,获得10
8秒前
善学以致用应助seventhcat采纳,获得10
9秒前
小灯发布了新的文献求助10
13秒前
chen测给jj的求助进行了留言
15秒前
瓜瓜蛙完成签到,获得积分20
15秒前
琳666发布了新的文献求助30
16秒前
烟花应助红豆子采纳,获得10
16秒前
合适的白筠完成签到,获得积分10
16秒前
17秒前
19秒前
meng发布了新的文献求助20
20秒前
20秒前
23秒前
Ellen发布了新的文献求助10
23秒前
seventhcat发布了新的文献求助10
24秒前
无情的数据线完成签到,获得积分10
24秒前
25秒前
桐桐应助buhuidanhuixue采纳,获得10
25秒前
昏睡小吕发布了新的文献求助10
27秒前
28秒前
李爱国应助在木星采纳,获得10
29秒前
西格玛发布了新的文献求助10
29秒前
Criminology34发布了新的文献求助300
31秒前
31秒前
科研通AI6应助lanxinyue采纳,获得10
31秒前
cheng发布了新的文献求助10
32秒前
破伤风发布了新的文献求助10
33秒前
34秒前
34秒前
林白发布了新的文献求助10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644032
求助须知:如何正确求助?哪些是违规求助? 4762682
关于积分的说明 15023283
捐赠科研通 4802257
什么是DOI,文献DOI怎么找? 2567397
邀请新用户注册赠送积分活动 1525099
关于科研通互助平台的介绍 1484620