A Pseudo Maximum likelihood approach to position estimation in dynamic multipath environments

多径传播 算法 计算机科学 延迟扩散 非视线传播 窄带 稳健性(进化) 波束赋形 职位(财务) 带宽(计算) 频道(广播) 数学 电信 无线 财务 经济 生物化学 化学 基因
作者
Alessio Fascista,Angelo Coluccia,Giuseppe Ricci
出处
期刊:Signal Processing [Elsevier]
卷期号:181: 107907-107907 被引量:33
标识
DOI:10.1016/j.sigpro.2020.107907
摘要

The problem of maximum likelihood (ML) direct position estimation (DPE) of a multi-antenna receiver for the case of dynamic multipath environments is addressed, exploiting narrowband broadcast radio signals, without assuming special conditions such as mmWave massive MIMO, OFDM, or large bandwidth. To overcome the dramatic complexity of the plain ML formulation, which involves a large number of unknown parameters (proportional to the number of paths times the number of observations), a reduced-complexity algorithm based on a pseudo ML approach is proposed. Unlike classical two-step approaches, where angles of arrival (AOAs) are first estimated and then used in a second step to (geometrically) estimate the unknown position, the proposed algorithm also exploits the information brought by non line-of-sight (NLOS) paths: specifically, the whole multipath parameters are estimated via spatially-smoothed MUSIC and adaptive beamforming, to reconstruct the projection matrices appearing in the ML cost function, which is ultimately maximized with respect to the unknown position (sticking to the DPE approach). In addition, a novel AOA-based mechanism that conditionally associates the LOS over time for a given trial position is designed; in doing so, a performance gain is obtained by the coherent integration of multiple observations from different channel realizations. The performance assessment shows that the proposed algorithm is very effective in (even severe) multipath conditions, outperforming natural competitors also when the number of antennas and samples is kept at the theoretical minimum, and exhibiting robustness to several types of mismatch.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TOM完成签到,获得积分10
刚刚
隐形曼青应助欣喜访旋采纳,获得10
1秒前
852应助Millie采纳,获得10
1秒前
龍Ryu完成签到,获得积分10
2秒前
内向凌兰发布了新的文献求助10
3秒前
伍秋望完成签到,获得积分10
3秒前
4秒前
5秒前
跳跃发布了新的文献求助10
6秒前
持卿应助宗磬采纳,获得20
6秒前
6秒前
花生油炒花生米完成签到 ,获得积分10
6秒前
Riki完成签到,获得积分10
8秒前
虚幻白玉发布了新的文献求助10
8秒前
德行天下完成签到,获得积分10
8秒前
Jenny应助lan采纳,获得10
9秒前
fztnh完成签到,获得积分10
9秒前
上官若男应助lyz666采纳,获得10
9秒前
顾念完成签到 ,获得积分10
9秒前
277发布了新的文献求助10
10秒前
小二郎应助GCD采纳,获得10
11秒前
hhhhhh完成签到 ,获得积分10
11秒前
甜味拾荒者完成签到,获得积分10
13秒前
小二郎应助BONBON采纳,获得10
13秒前
14秒前
charllie完成签到 ,获得积分10
14秒前
空禅yew完成签到,获得积分10
15秒前
坚强亦丝应助跳跃采纳,获得10
17秒前
英俊的铭应助cc采纳,获得10
17秒前
huangsan完成签到,获得积分10
17秒前
匹诺曹完成签到,获得积分10
17秒前
18秒前
华仔应助进取拼搏采纳,获得10
18秒前
19秒前
dingdong发布了新的文献求助10
19秒前
you完成签到 ,获得积分10
20秒前
qwf完成签到 ,获得积分10
20秒前
21秒前
万能图书馆应助一一采纳,获得10
21秒前
执着跳跳糖完成签到 ,获得积分10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808