Unlocking solid-state conversion batteries reinforced by hierarchical microsphere stacked polymer electrolyte

材料科学 电解质 阴极 阳极 化学工程 聚合物 电池(电) 锂(药物) 准固态 电极 纳米技术 复合材料 化学 色素敏化染料 工程类 内分泌学 物理化学 功率(物理) 物理 医学 量子力学
作者
Jiulin Hu,Keyi Chen,Zhenguo Yao,Chilin Li
出处
期刊:Science Bulletin [Elsevier]
卷期号:66 (7): 694-707 被引量:88
标识
DOI:10.1016/j.scib.2020.11.017
摘要

Pursuing all-solid-state lithium metal batteries with dual upgrading of safety and energy density is of great significance. However, searching compatible solid electrolyte and reversible conversion cathode is still a big challenge. The phase transformation at cathode and Li deformation at anode would usually deactivate the electrode-electrolyte interfaces. Herein, we propose an all-solid-state Li-FeF3 conversion battery reinforced by hierarchical microsphere stacked polymer electrolyte for the first time. This g-C3N4 stuffed polyethylene oxide (PEO)-based electrolyte is lightweight due to the absence of metal element doping, and it enables the spatial confinement and dissolution suppression of conversion products at soft cathode-polymer interface, as well as Li dendrite inhibition at filler-reinforced anode-polymer interface. Two-dimensional (2D)-nanosheet-built porous g-C3N4 as three-dimensional (3D) textured filler can strongly cross-link with PEO matrix and LiTFSI (TFSI: bistrifluoromethanesulfonimide) anion, leading to a more conductive and salt-dissociated interface and therefore improved conductivity (2.5 × 10-4 S/cm at 60 °C) and Li+ transference number (0.69). The compact stacking of highly regular robust microspheres in polymer electrolyte enables a successful stabilization and smoothening of Li metal with ultra-long plating/striping cycling for at least 10,000 h. The corresponding Li/LiFePO4 solid cells can endure an extremely high rate of 12 C. All-solid-state Li/FeF3 cells show highly stabilized capacity as high as 300 mAh/g even after 200 cycles and of ~200 mAh/g at extremely high rate of 5 C, as well as ultra-long cycling for at least 1200 cycles at 1 C. High pseudocapacitance contribution (>55%) and diffusion coefficient (as high as 10-12 cm2/s) are responsible for this high-rate fluoride conversion. This result provides a promising solution to conversion-type Li metal batteries of high energy and safety beyond Li-S batteries, which are difficult to realize true "all-solid-state" due to the indispensable step of polysulfide solid-liquid conversion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超级尔白发布了新的文献求助10
刚刚
吕耀炜完成签到,获得积分10
1秒前
Juneaper发布了新的文献求助10
1秒前
彭于晏应助聪慧的梦安采纳,获得10
2秒前
wang完成签到,获得积分10
2秒前
2秒前
lu完成签到,获得积分10
3秒前
linllll完成签到,获得积分10
3秒前
雪糕完成签到,获得积分10
6秒前
三火完成签到,获得积分10
7秒前
10秒前
万刈完成签到,获得积分10
13秒前
yimu发布了新的文献求助10
13秒前
贰鸟应助mitty采纳,获得20
13秒前
贰鸟应助mitty采纳,获得20
13秒前
贰鸟应助mitty采纳,获得20
13秒前
贰鸟应助mitty采纳,获得20
13秒前
14秒前
斯文败类应助笨笨的怜雪采纳,获得20
14秒前
15秒前
SciGPT应助风趣安青采纳,获得10
16秒前
美好乐松应助poyo采纳,获得20
17秒前
17秒前
18秒前
19秒前
杨帅康完成签到,获得积分10
19秒前
搜集达人应助bobo采纳,获得50
19秒前
q1010611084发布了新的文献求助10
20秒前
20秒前
111111完成签到,获得积分10
21秒前
sxyyy发布了新的文献求助10
21秒前
fff123完成签到,获得积分10
22秒前
Orange应助楠楠多多采纳,获得30
25秒前
无花果应助第五个完全数采纳,获得10
26秒前
fgh完成签到,获得积分10
26秒前
雅y823完成签到,获得积分20
29秒前
hpp完成签到,获得积分10
30秒前
李健应助杨帅康采纳,获得10
30秒前
lxt完成签到,获得积分10
33秒前
老迟到的幼枫完成签到,获得积分10
34秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156078
求助须知:如何正确求助?哪些是违规求助? 2807458
关于积分的说明 7873196
捐赠科研通 2465782
什么是DOI,文献DOI怎么找? 1312412
科研通“疑难数据库(出版商)”最低求助积分说明 630102
版权声明 601905