Machine Learning to Predict Cardiac Death Within 1 Hour After Terminal Extubation*

医学 器官捐献 四分位间距 回顾性队列研究 比例危险模型 队列 危险系数 急诊医学 接收机工作特性 器官采购 重症监护医学 内科学 移植 置信区间
作者
Meredith C. Winter,Travis E. Day,David Ledbetter,Melissa Aczon,Christopher J. L. Newth,Randall C. Wetzel,Patrick A. Ross
出处
期刊:Pediatric Critical Care Medicine [Ovid Technologies (Wolters Kluwer)]
卷期号:22 (2): 161-171 被引量:22
标识
DOI:10.1097/pcc.0000000000002612
摘要

Accurate prediction of time to death after withdrawal of life-sustaining therapies may improve counseling for families and help identify candidates for organ donation after cardiac death. The study objectives were to: 1) train a long short-term memory model to predict cardiac death within 1 hour after terminal extubation, 2) calculate the positive predictive value of the model and the number needed to alert among potential organ donors, and 3) examine associations between time to cardiac death and the patient's characteristics and physiologic variables using Cox regression.Retrospective cohort study.PICU and cardiothoracic ICU in a tertiary-care academic children's hospital.Patients 0-21 years old who died after terminal extubation from 2011 to 2018 (n = 237).None.The median time to death for the cohort was 0.3 hours after terminal extubation (interquartile range, 0.16-1.6 hr); 70% of patients died within 1 hour. The long short-term memory model had an area under the receiver operating characteristic curve of 0.85 and a positive predictive value of 0.81 at a sensitivity of 94% when predicting death within 1 hour of terminal extubation. About 39% of patients who died within 1 hour met organ procurement and transplantation network criteria for liver and kidney donors. The long short-term memory identified 93% of potential organ donors with a number needed to alert of 1.08, meaning that 13 of 14 prepared operating rooms would have yielded a viable organ. A Cox proportional hazard model identified independent predictors of shorter time to death including low Glasgow Coma Score, high Pao2-to-Fio2 ratio, low-pulse oximetry, and low serum bicarbonate.Our long short-term memory model accurately predicted whether a child will die within 1 hour of terminal extubation and may improve counseling for families. Our model can identify potential candidates for donation after cardiac death while minimizing unnecessarily prepared operating rooms.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研顺利完成签到,获得积分10
3秒前
3秒前
asdf完成签到,获得积分10
3秒前
3秒前
4秒前
5秒前
cherryol完成签到 ,获得积分10
6秒前
kid1912应助稳重的青旋采纳,获得10
6秒前
刘一一完成签到,获得积分10
6秒前
积极雨南发布了新的文献求助10
6秒前
9秒前
vanilla发布了新的文献求助10
9秒前
10秒前
明理的白风完成签到,获得积分10
10秒前
11秒前
小马甲应助清爽的雨竹采纳,获得10
16秒前
吴未发布了新的文献求助10
16秒前
SciGPT应助星河采纳,获得10
16秒前
lyt发布了新的文献求助10
18秒前
21秒前
QQ酱发布了新的文献求助10
21秒前
唠叨的曼易完成签到,获得积分10
22秒前
孙启玉完成签到,获得积分10
22秒前
kk应助Yang采纳,获得40
22秒前
李李李er完成签到,获得积分10
25秒前
阿信必发JACS应助大碗宽面采纳,获得10
25秒前
25秒前
桐桐应助科研通管家采纳,获得10
26秒前
领导范儿应助科研通管家采纳,获得10
26秒前
大个应助科研通管家采纳,获得10
26秒前
Hou完成签到,获得积分10
26秒前
26秒前
MOON完成签到,获得积分10
27秒前
丘比特应助羊青丝采纳,获得10
28秒前
28秒前
28秒前
顾矜应助可研小冲采纳,获得10
30秒前
皮皮领发布了新的文献求助10
31秒前
李李李er发布了新的文献求助10
31秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
The Three Stars Each: The Astrolabes and Related Texts 500
Product Class 33: N-Arylhydroxylamines 300
Machine Learning in Chemistry 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3387265
求助须知:如何正确求助?哪些是违规求助? 3000146
关于积分的说明 8789508
捐赠科研通 2685928
什么是DOI,文献DOI怎么找? 1471378
科研通“疑难数据库(出版商)”最低求助积分说明 680234
邀请新用户注册赠送积分活动 672997