A Self-Adaptive Selection of Subset Size Method in Digital Image Correlation Based on Shannon Entropy

斑点图案 数字图像相关 计算 计算机科学 熵(时间箭头) 算法 数字图像 图像处理 数字图像处理 位移场 图像(数学) 人工智能 光学 物理 量子力学 有限元法 热力学
作者
Xiaoyong Liu,Xin-Zhou Qin,Rongli Li,Qihan Li,Song Gao,Hongwei Zhao,Zhao-Peng Hao,Xiaoling Wu
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 184822-184833 被引量:6
标识
DOI:10.1109/access.2020.3028551
摘要

Digital image correlation (DIC) is a typical non-contact full-field deformation parameters measurement technique based on image processing technology and numerical computation methods. To obtain the displacements of each point of interrogation in DIC, subsets surrounding the point must be chosen in the reference image and deformed image before correlating. In the existing DIC techniques, the size of subset is always pre-defined by users manually according to their experiences. However, the subset size has proven to be a critical parameter for the accuracy of computed displacements. In the present paper, a self-adaptive selection of subset size method based on Shannon entropy is proposed to overcome the deficiency of existing DIC methods. To verify the effectiveness and accuracy of the proposed algorithm, a numerical translated test is performed on four actual speckle patterns with different entropies, and then another test is performed on four computer-generated speckle patterns with non-uniform displacement field. All the results successfully demonstrate that the proposed algorithm can significantly improve displacement measurement accuracy without reducing too much computational efficiency. Finally, a practical application of the proposed algorithm to micro-tensile of Q235 steel is conducted.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助科研通管家采纳,获得10
1秒前
圆锥香蕉应助科研通管家采纳,获得20
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
BowieHuang应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
1秒前
华仔应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
1秒前
曾无忧应助科研通管家采纳,获得10
2秒前
BowieHuang应助科研通管家采纳,获得10
2秒前
敬老院N号应助科研通管家采纳,获得30
2秒前
WJH应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
Lny应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
BowieHuang应助科研通管家采纳,获得10
2秒前
3秒前
3秒前
6666应助科研通管家采纳,获得10
3秒前
3秒前
juqiu发布了新的文献求助10
3秒前
强扭的瓜完成签到,获得积分10
3秒前
大梦想家完成签到,获得积分10
5秒前
orixero应助王i采纳,获得10
6秒前
wanci应助juqiu采纳,获得10
6秒前
美丽的如彤完成签到,获得积分10
7秒前
Orange应助自觉从筠采纳,获得10
7秒前
hp发布了新的文献求助10
8秒前
CodeCraft应助大胆的初瑶采纳,获得10
9秒前
义气的巨人完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
小青椒应助nihao采纳,获得30
11秒前
xingyi完成签到,获得积分10
12秒前
活力的念蕾完成签到,获得积分10
12秒前
yygz0703完成签到 ,获得积分10
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604302
求助须知:如何正确求助?哪些是违规求助? 4689045
关于积分的说明 14857600
捐赠科研通 4697314
什么是DOI,文献DOI怎么找? 2541233
邀请新用户注册赠送积分活动 1507355
关于科研通互助平台的介绍 1471867