A Self-Adaptive Selection of Subset Size Method in Digital Image Correlation Based on Shannon Entropy

斑点图案 数字图像相关 计算 计算机科学 熵(时间箭头) 算法 数字图像 图像处理 数字图像处理 位移场 图像(数学) 人工智能 光学 物理 量子力学 有限元法 热力学
作者
Xiaoyong Liu,Xin-Zhou Qin,Rongli Li,Qihan Li,Song Gao,Hongwei Zhao,Zhao-Peng Hao,Xiaoling Wu
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 184822-184833 被引量:6
标识
DOI:10.1109/access.2020.3028551
摘要

Digital image correlation (DIC) is a typical non-contact full-field deformation parameters measurement technique based on image processing technology and numerical computation methods. To obtain the displacements of each point of interrogation in DIC, subsets surrounding the point must be chosen in the reference image and deformed image before correlating. In the existing DIC techniques, the size of subset is always pre-defined by users manually according to their experiences. However, the subset size has proven to be a critical parameter for the accuracy of computed displacements. In the present paper, a self-adaptive selection of subset size method based on Shannon entropy is proposed to overcome the deficiency of existing DIC methods. To verify the effectiveness and accuracy of the proposed algorithm, a numerical translated test is performed on four actual speckle patterns with different entropies, and then another test is performed on four computer-generated speckle patterns with non-uniform displacement field. All the results successfully demonstrate that the proposed algorithm can significantly improve displacement measurement accuracy without reducing too much computational efficiency. Finally, a practical application of the proposed algorithm to micro-tensile of Q235 steel is conducted.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
寒冷忆山发布了新的文献求助10
刚刚
M记完成签到,获得积分10
1秒前
科研通AI6应助暴躁的幼荷采纳,获得30
2秒前
勤恳雅莉应助Susu采纳,获得10
3秒前
3秒前
杀出地狱发布了新的文献求助10
4秒前
4秒前
TRY发布了新的文献求助10
6秒前
7秒前
飘逸的白枫完成签到,获得积分10
8秒前
8秒前
szy完成签到,获得积分0
8秒前
林1关注了科研通微信公众号
8秒前
搞对发布了新的文献求助10
9秒前
9秒前
思源应助河河采纳,获得10
10秒前
11秒前
11秒前
11秒前
13秒前
13秒前
14秒前
量子星尘发布了新的文献求助20
14秒前
14秒前
谁家那小谁完成签到,获得积分10
15秒前
充电宝应助dd99081采纳,获得10
15秒前
杀出地狱完成签到,获得积分10
15秒前
乐住号欢发布了新的文献求助10
15秒前
15秒前
风中的奎发布了新的文献求助10
17秒前
17秒前
淡定的松子完成签到,获得积分10
17秒前
123完成签到 ,获得积分10
18秒前
汉堡包应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
李健应助科研通管家采纳,获得10
18秒前
爆米花应助科研通管家采纳,获得10
18秒前
桐桐应助科研通管家采纳,获得10
18秒前
汉堡包应助科研通管家采纳,获得10
18秒前
painting应助科研通管家采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5571861
求助须知:如何正确求助?哪些是违规求助? 4657052
关于积分的说明 14718892
捐赠科研通 4597857
什么是DOI,文献DOI怎么找? 2523425
邀请新用户注册赠送积分活动 1494258
关于科研通互助平台的介绍 1464345