Deep learning enabled classification of Mayo endoscopic subscore in patients with ulcerative colitis

医学 溃疡性结肠炎 接收机工作特性 胃肠病学 曲线下面积 结肠炎 内科学 分级(工程) 曲线下面积 疾病 炎症性肠病 试验预测值 预测值 人工智能 药代动力学 土木工程 工程类 计算机科学
作者
Hriday P. Bhambhvani,Alvaro Zamora
出处
期刊:European Journal of Gastroenterology & Hepatology [Ovid Technologies (Wolters Kluwer)]
卷期号:33 (5): 645-649 被引量:43
标识
DOI:10.1097/meg.0000000000001952
摘要

Objective Previous reports of deep learning-assisted assessment of Mayo endoscopic subscore (MES) in ulcerative colitis have only explored the ability to distinguish disease remission (MES 0/1) from severe disease (MES 2/3) or inactive disease (MES 0) from active disease (MES 1–3). We sought to explore the utility of deep learning models in the automated grading of each individual MES in ulcerative colitis. Methods In this retrospective study, a total of 777 representative still images of endoscopies from 777 patients with clinically active ulcerative colitis were graded using the MES by two physicians. Each image was assigned an MES of 1, 2, or 3. A 101-layer convolutional neural network model was trained and validated on 90% of the data, while 10% was left for a holdout test set. Model discrimination was assessed by calculating the area under the curve (AUC) of a receiver operating characteristic as well as standard measures of accuracy, specificity, sensitivity, positive predictive value (PPV), and negative predictive value (NPV). Results In the holdout test set, the final model classified MES 3 disease with an AUC of 0.96, MES 2 disease with an AUC of 0.86, and MES 1 disease with an AUC 0.89. Overall accuracy was 77.2%. Across MES 1, 2, and 3, average specificity was 85.7%, average sensitivity was 72.4%, average PPV was 77.7%, and the average NPV was 87.0%. Conclusion We have demonstrated a deep learning model was able to robustly classify individual grades of endoscopic disease severity among patients with ulcerative colitis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
你哥的发布了新的文献求助10
刚刚
阿敬完成签到,获得积分10
1秒前
1秒前
畅快的蛋挞应助妄语采纳,获得10
2秒前
Wo了喝发布了新的文献求助10
2秒前
3秒前
牙鸟完成签到,获得积分10
5秒前
十月的天空完成签到,获得积分10
6秒前
smile发布了新的文献求助10
6秒前
可爱雯儿发布了新的文献求助10
8秒前
彳亍1117应助超级的小蚂蚁采纳,获得10
9秒前
强健的雅绿完成签到,获得积分10
10秒前
13秒前
毛毛弟发布了新的文献求助10
14秒前
14秒前
寻道图强应助少女闰土采纳,获得30
14秒前
桐桐应助cycycycycyy采纳,获得10
14秒前
Polymer72应助Wo了喝采纳,获得10
14秒前
小蘑菇应助LL采纳,获得10
15秒前
情怀应助叶光大采纳,获得10
15秒前
陈陈完成签到 ,获得积分10
16秒前
16秒前
果酱肚肚完成签到 ,获得积分10
17秒前
bkagyin应助ck采纳,获得10
17秒前
Candice应助想多睡会儿采纳,获得10
17秒前
阳光怀亦发布了新的文献求助10
18秒前
youchgg发布了新的文献求助10
21秒前
at发布了新的文献求助10
23秒前
23秒前
27秒前
27秒前
27秒前
LL发布了新的文献求助10
28秒前
毛毛弟完成签到 ,获得积分10
29秒前
Pepsi完成签到,获得积分10
29秒前
hklong完成签到 ,获得积分10
29秒前
30秒前
mayu发布了新的文献求助10
31秒前
活泼莫英发布了新的文献求助10
31秒前
丢丢发布了新的文献求助10
33秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3341032
求助须知:如何正确求助?哪些是违规求助? 2968833
关于积分的说明 8635241
捐赠科研通 2648355
什么是DOI,文献DOI怎么找? 1450125
科研通“疑难数据库(出版商)”最低求助积分说明 671738
邀请新用户注册赠送积分活动 660838