电催化剂
催化作用
部分
石墨烯
电化学
材料科学
过氧化氢
化学工程
光化学
无机化学
电极
纳米技术
化学
物理化学
工程类
有机化学
作者
Euiyeon Jung,Heejong Shin,Byoung‐Hoon Lee,V. I. Efremov,Suhyeong Lee,Hyeon Seok Lee,Jiheon Kim,Wytse Hooch Antink,Subin Park,Kug‐Seung Lee,Sung‐Pyo Cho,Jong Suk Yoo,Yung‐Eun Sung,Taeghwan Hyeon
出处
期刊:Nature Materials
[Springer Nature]
日期:2020-01-13
卷期号:19 (4): 436-442
被引量:880
标识
DOI:10.1038/s41563-019-0571-5
摘要
Despite the growing demand for hydrogen peroxide it is almost exclusively manufactured by the energy-intensive anthraquinone process. Alternatively, H2O2 can be produced electrochemically via the two-electron oxygen reduction reaction, although the performance of the state-of-the-art electrocatalysts is insufficient to meet the demands for industrialization. Interestingly, guided by first-principles calculations, we found that the catalytic properties of the Co–N4 moiety can be tailored by fine-tuning its surrounding atomic configuration to resemble the structure-dependent catalytic properties of metalloenzymes. Using this principle, we designed and synthesized a single-atom electrocatalyst that comprises an optimized Co–N4 moiety incorporated in nitrogen-doped graphene for H2O2 production and exhibits a kinetic current density of 2.8 mA cm−2 (at 0.65 V versus the reversible hydrogen electrode) and a mass activity of 155 A g−1 (at 0.65 V versus the reversible hydrogen electrode) with negligible activity loss over 110 hours. Producing H2O2 electrochemically currently use electrocatalysts that are insufficient to meet the demands for industrialization. A single-atom electrocatalyst with an optimized Co–N4 moiety incorporated in nitrogen-doped graphene is shown to exhibit enhanced performance for H2O2 production.
科研通智能强力驱动
Strongly Powered by AbleSci AI