矩阵完成
低秩近似
黎曼流形
梯度下降
基质(化学分析)
初始化
秩(图论)
限制等距性
数学
计算机科学
等距(黎曼几何)
纯数学
算法
组合数学
压缩传感
物理
量子力学
机器学习
人工神经网络
张量(固有定义)
复合材料
高斯分布
材料科学
程序设计语言
作者
Ke Wei,Jian‐Feng Cai,Tony F. Chan,Shingyu Leung
出处
期刊:Inverse Problems and Imaging
[American Institute of Mathematical Sciences]
日期:2020-01-01
卷期号:14 (2): 233-265
被引量:17
摘要
We establish the exact recovery guarantees for a class of Riemannian optimization methods based on the embedded manifold of low rank matrices for matrix completion. Assume $ m $ entries of an $ n\times n $ rank $ r $ matrix are sampled independently and uniformly with replacement. We first show that with high probability the Riemannian gradient descent and conjugate gradient descent algorithms initialized by one step hard thresholding are guaranteed to converge linearly to the measured matrix provided $ \begin{align*} m\geq C_\kappa n^{1.5}r\log^{1.5}(n), \end{align*} $ where $ C_\kappa $ is a numerical constant depending on the condition number of the measured matrix. Then the sampling complexity is further improved to $ \begin{align*} m\geq C_\kappa nr^2\log^{2}(n) \end{align*} $ via the resampled Riemannian gradient descent initialization. The analysis of the new initialization procedure relies on an asymmetric restricted isometry property of the sampling operator and the curvature of the low rank matrix manifold. Numerical simulation shows that the algorithms are able to recover a low rank matrix from nearly the minimum number of measurements.
科研通智能强力驱动
Strongly Powered by AbleSci AI